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Abstract

Policymakers require up-to-date statistics to make good decisions. Most official

statistics in economics and public health are released only after a significant delay.

The goal of “nowcasting” (a combination of the words “now” and “forecasting”)

is to estimate these statistics before their official release. Better nowcasts would

help policymakers respond to rapidly developing crises in a range of domains. The

recent Covid-19 crisis has highlighted this issue: it is extremely challenging to make

decisions in crisis without knowledge of either the current state of the economy or

the incidence of disease in the population.

Recent technological advances mean we now generate real-time data simply

by going about our lives. This thesis shows how we can use novel data sources

to improve nowcasts in economics and public health. We highlight how we are no

longer constrained to traditional data sources, such as surveys.

We first investigate whether high-frequency aircraft location data can gener-

ate faster GDP estimates. We also show that this dataset can help improve estimates

of airport performance, particularly at the onset of the Covid-19 crisis. We next use

a novel combination of Wikipedia page views and data scraped from online “dark-

net” drug markets to nowcast illicit drug demand. Better statistics on drug markets

would be highly valuable to policymakers in both economics and public health. Fi-

nally, we use data from Google Trends to nowcast the incidence of chikungunya

in Rio de Janeiro. Official disease data is delivered with long and variable delays.

We show that including real-time Google Trends data allows earlier detection of

epidemics.

This thesis finds evidence that novel data sources can improve the speed

and accuracy of official statistics in a range of domains. As the variety of novel

data sources keeps growing, these may give policymakers more complete, real-time

information when making crucial decisions.
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Chapter 1

Introduction

Policymakers require fast and accurate statistics to make effective decisions across

a range of domains. Currently, there is usually a significant delay with releasing

official statistics for both economics and public health. For example: the first official

publication of UK GDP for March 2020, the beginning of the Covid-19 crisis, was not

available until two months later in May 2020. Accurate statistics for public health

can take even longer to publish. In Brazil, policymakers tracking dengue fever often

still do not have complete data even after three months. Given the potential lag

between important policy decisions, such as economic stimulus, and their impact on

society, it is important for policymakers to act as quickly as possible in response to

crises. Detecting these crises quickly requires up-to-date information on the world.

“Nowcasting” (a combination of the terms “now” and “forecasting”) refers

to the practice of estimating the current value of statistics before their official re-

lease. There is growing recognition among policymakers of the importance of better

nowcasts. The UK Office for National Statistics (ONS) now has a program dedi-

cated to providing faster indicators of economic activity.1 Similarly, both the Bank

of England2 and Federal Reserve3 have teams for estimating the current state of

macroeconomic variables such as Gross Domestic Product (GDP) and inflation. In

public health, the US Center for Disease Control (CDC) has invested in rapid esti-

mates of flu incidence at weekly frequency4. The Covid-19 crisis has underlined the

importance of better nowcasting in both economics and public health: policymakers

are often making critical decisions, such as economic stimulus or lockdown timing,

without accurate knowledge of either the current state of the economy or the spread

1https://www.ons.gov.uk/economy/economicoutputandproductivity/output/bulletins/
fasterindicatorsofeconomicactivityuk/february2020

2https://www.bankofengland.co.uk/quarterly-bulletin/2018/2018-q3/
3https://www.frbatlanta.org/cqer/research/gdpnow
4https://www.cdc.gov/flu/weekly/index.htm
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of Covid-19 among the population.

The new field of computational social science holds much promise for im-

proving nowcasting. We now generate far more data than ever before simply by

going about our lives. Activities ranging from searching on the internet to travel-

ling on aircraft leave streams of data behind that may have value for nowcasting.

Simultaneously, researchers have developed computational techniques for handling

this rapidly growing volume and variety of new data sources. For example, our high-

frequency aircraft location data, used in Chapters 3 and 4 of this thesis, contains

over 30 billion observations. Without modern computational power and techniques,

such as MapReduce, it would be infeasible to analyse data at such scale. New

techniques from machine learning for handling unstructured data, such as text and

images, allow for analysis of a greater variety of data sources than ever before. This

is particularly relevant for nowcasting, as traditional data capture methods such as

surveys rarely yield data in real-time.

In Chapter 2, we first review recent developments in computational social

science that have paved the way for a greater variety of data sources to feed into

better nowcasts. We then explore nowcasting specifically for economics, where a rich

methodological literature has evolved but is somewhat limited in the variety of data

sources considered. We next assess nowcasting for public health, where there is a

particularly well-developed literature on using internet search data in epidemiology.

The chapter finishes with a review of literature using the specific novel data sources

featured in this thesis: aircraft location data and illicit drug sales data scraped from

darknet markets.

Nowcasting GDP is a well-studied problem in economics. Most economic

policy tools, such as interest rates, only fully impact the economy after a signifi-

cant delay. Recessions, such as the 2008 financial crisis, usually occur quickly and

without prior warning. Policymakers must therefore respond as quickly as possible

to recessions in order to limit their damage. In Chapter 3, we analyse the poten-

tial for novel aircraft location data to improve nowcasts of airline performance and

GDP. Aviation is a major component of GDP, directly contributing at least 3% in

both the UK and USA, alongside supporting other economic sectors. The Covid-19

crisis shows how rapidly the aviation sector can change, so accurate data on its

current performance is particularly important. However, current aviation statistics

are released with a delay of several months. Aircraft now broadcast their location

in real-time at high frequency using the Automated Dependent Surveillance Broad-

cast (ADS-B) system. We show that ADS-B data can be transformed to accurately

estimate airline flight volumes in real-time, which is a crucial indicator of their

2



performance. We further show that real-time knowledge of airline flight volumes

provides a real-time indicator for aviation’s contribution to GDP. This indicator

is particularly valuable during volatile economic times, such as the 2008 financial

crisis and 2012 Eurozone crisis. These results were published in Nature Publishing

Group’s Scientific Reports [Miller et al., 2020b].

In Chapter 4, we extend the application of ADS-B data to nowcasting airport

performance. Flight volumes are a key determinant of airport performance. We

exploit the geographic dimension of ADS-B data to show that it can significantly

improve nowcasts of airport flight volumes. Chapter 4 also extends the time series of

ADS-B data to April 2020, which allows us to show that ADS-B data is particularly

valuable at the start of the Covid-19 crisis. Future economic applications of this data

could include nowcasting the international trade network. UK and US authorities

currently publish granular data on trade flows through airports, but its publication

is delayed by at least three months.

Black markets, such as illicit drugs, have always been difficult for economists

to monitor. Currently, policymakers mostly rely on surveys that are infrequent -

sometimes as low as annual frequency - and prone to response bias. This has also

been problematic for public health policymakers, who sometimes fail to detect rapid

changes in drug use, such as during the US Fentanyl crisis, until they have be-

come a fully fledged epidemic. In Chapter 5, we explore the potential for a novel

combination of drug sales data scraped from online markets and Wikipedia page

views to help nowcast illicit drug demand. Owing to recent developments in cryp-

tocurrencies and web browsing, there are now online “darknet” markets that enable

anonymous trade in illicit goods. We collect a transaction-level dataset of illicit

drug trades by scraping the buyer feedback on these markets, which is available in

real-time. We then show that we can construct a global, high frequency measure of

illicit drug demand from the transaction-level data. However, darknet markets are

difficult to scrape reliably so we cannot always assume that data will be available

from them when needed. Therefore, we further show that Wikipedia page views

for each drug can accurately nowcast darknet demand for that drug. We provide

evidence that darknet demand is generally representative of broader demand. Mon-

itoring Wikipedia page views could therefore allow early detection of rapid changes

in drug use before they become public health crises. These results were published

in Proceedings of The Web Conference 2020 [Miller et al., 2020a].

A more common application of nowcasting in public health is in epidemiol-

ogy. Accurate, real-time data on disease incidence is critical for policymakers to

limit, or respond effectively to, the spread of disease. Chikungunya, a mosquito-
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borne disease or arbovirus, is a growing public health problem in Brazil. There

were over 130,000 cases in 2019 alone. Chikungunya can lead to complications such

as paralysis and workplace absence. These complications are catastrophic for the

low-income households usually affected by chikungunya. In Chapter 6, we analyse

whether internet search data from Google Trends can improve nowcasts of chikun-

gunya incidence in Rio de Janeiro. Current statistics on chikungunya case counts

are prone to long delays, as there is a long and varied lag between a patient reporting

symptoms and entry of the case into the official monitoring system. However, data

on Google searches for chikungunya-related terms is reliably available in real-time.

We build on a Bayesian approach designed for data that is subject to long and var-

ied delays. This differs from models used in previous chapters that require regular

and complete data on previous periods, and are therefore unsuitable for nowcasting

chikungunya. We find that including Google search data improves both nowcast

accuracy and precision. Furthermore, these improvements are largest during epi-

demics, which are particularly important periods for policymakers to have accurate

current data. Including Google search data in surveillance systems may therefore

help policymakers respond more quickly to future chikungunya epidemics. These

results are due to be published in PLOS Neglected Tropical Diseases [Miller et al.,

2022].

In the final chapter, we review our main results, their limitations and op-

portunities for future research to build on this thesis. We conclude that there is

great potential for new data sources to improve nowcasts in both economics and

public health. However, we emphasise the need for caution and a gradual approach

when using novel data sources. In all chapters, we include novel data sources as a

complement to a baseline model based on traditional methods, rather than replacing

traditional methods entirely. We then analyse the marginal predictive value of novel

data sources. When deployed in this way, we show that novel data sources can be

a powerful tool to augment existing nowcasting methods. In turn, they may help

improve the speed and accuracy of official statistics.
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Chapter 2

Literature review

2.1 Introduction

Fast and accurate statistics are important for policymakers. First used in eco-

nomics [Giannone et al., 2008], nowcast combines the words “now” and “forecast”

to refer to the estimation of the current value of statistics that are only officially

released after a lag. Without fast and accurate statistics, it is much more diffi-

cult to make critical decisions in many areas of policy. In the midst of a recession,

economic policymakers deciding how large to make an economic stimulus package

would benefit greatly from precise estimates of the recession’s depth. Similarly,

governments considering a lockdown in response to Covid-19 would benefit from

up-to-date knowledge of the current number of infections. While nowcasting Covid-

19 infections is out of scope for this thesis, the crisis has underlined the importance

of fast and accurate statistics. This thesis focuses on novel data and methods that

could provide such statistics in two key policy areas: economics and public health.

This chapter reviews existing literature on nowcasting. We first review the

developments in the field of computational social science. We focus particularly

on the use of “unstructured” data, such as images and text, which initially come

in a non-tabular format. We document how new data and methods have recently

enabled large improvements in nowcasting, which could be very valuable for policy.

We then review the development of nowcasting in economics. Much of the

literature in economics has focused on improving the econometric methodology for

incorporating higher frequency economic data into nowcasting low frequency official

statistics. For example: Giannone et al. [2008] show how incorporating monthly

indicators, such as purchasing manager surveys, improves nowcasts of quarterly

GDP releases in the USA. Generally, this literature has taken the breadth of available
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data sources as a given, rather than trying to engineer new data sources. There is

now some body of research into including real-time, online indicators, and growing

awareness of potential for using broader data sources in policy. For example, the

UK Office for National Statistics now has a dedicated “faster indicators” program

for improving the speed of its economic statistics [Nolan, 2019]. However, studies

of the inclusion of a wider range of novel data sources and use of machine learning

techniques are less well developed. This justifies the focus of this thesis on expanding

the sources of data available for nowcasting.

Next, we review developments in nowcasting for public health. There has

been little research so far into nowcasting drug demand, where faster statistics would

benefit both economics and public health policymakers. This is partially due to a

lack of high-frequency drug demand data so far, which is why we highlight darknet

markets as an important source of data in this thesis. The literature on nowcasting in

epidemiology is much better developed; there have been many studies using online

search data since the seminal paper on using Google Trends to nowcast the flu,

known as Google Flu Trends, in 2009 [Ginsberg et al., 2009]. However, nowcasting

the spread of disease has proven difficult – the original Google Flu Trends method

led to some high-profile overestimates of flu incidence in later flu seasons [Lazer

et al., 2014]. Much of the literature so far has been restricted to documenting a

correlation between a data source and the spread of a disease, rather than a fuller

out-of-sample evaluation of whether a new data source is useful for nowcasting. We

evaluate all models in this thesis out-of-sample against a relevant baseline. We also

retrain our models across time as new data becomes available, which was a key

missing component in the original Google Flu Trends study [Preis and Moat, 2014].

Most nowcasting models also assume complete, regular data on disease prevalence

in previous time periods, which is often not the case when nowcasting diseases in

practice. In Chapter 6 of this thesis, we highlight that our proposed models are

always operationally feasible in that they use only data available at the time of the

nowcast, without needing to aggregate to long time periods such as months.

The final section reviews the nascent literature using aircraft location data

and data from darknet markets, which are the two novel data sources contributed

by this thesis. There have been some applications of darknet data in economics,

but none so far in public health or nowcasting of statistics from any field. Simi-

larly, location data from vehicles has rarely been used in economics, with only some

preliminary studies documenting possible uses as an early indicator for economic

variables. Aircraft location data in particular has barely been used outside at all

outside its originally intended application in aviation. This thesis therefore marks

6



the first use of both data sources in nowcasting, while paying heed to methodologi-

cal developments in the literature to ensure rigorous evaluation of their nowcasting

value.

2.2 Recent advances in computational social science

2.2.1 Use of text data

We now generate much more real-time data than ever before. When we search for

information on Google, this leaves a record of our search terms, time of search and

location we searched from [Choi and Varian, 2009b]. When we review a product

on Amazon, we similarly create a record of our review time, content and evidence

of demand for the product [See-To and Ngai, 2018]. When we purchase anything

with a credit card, we create a record of the price, time of purchase and account

transaction, potentially along with further personal data on ourselves [de Montjoye

et al., 2015; Galbraith and Tkacz, 2018]. Even our decisions to travel, whether by

road [Rowland, 2019], sea [Bonham et al., 2018] or air [Strohmeier et al., 2018], can

now create data from the location tracks left by the vehicles we have travelled in.

Unlike traditional data sources such as surveys, much of this new data is generated

incidentally – we create it as an unintentional by-product of our regular actions.

The new field of “computational social science” focuses on generating insights from

this vast volume of incidental data [Conte et al., 2012; Moat et al., 2014]. This

section reviews how the development of computational social science has enabled

large potential improvements in nowcasting.

Lazer et al. [2009] were the first to identify computational social science as

a new academic field. Even before the internet became so deeply embedded in our

daily lives, there was a rapidly developing literature on how to exploit the first

sources of internet data, such as email. Social network analysis using email, which

previously relied on smaller scale survey data, provides some of the earliest examples.

Eckmann et al. [2004] are able to infer the social network of an office by its email

traffic. Kossinets and Watts [2006] find similar results when analysing the email

network of a university, and are able to analyse network robustness at a large scale.

These studies were among the first to show the potential for using internet data to

analyse problems at a scale not previously feasible.

The computational social science literature began to expand more quickly

with high profile studies using search engine data. Ginsberg et al. [2009] show that

Google searches for flu symptoms could provide an accurate leading indicator for

weekly flu data published by the CDC. This was not the first paper to hypothe-
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sise a relationship between internet searches and influenza case volume, Polgreen

et al. [2008] show a correlation with Yahoo searches. However, Ginsberg et al.

[2009] demonstrate a very concrete policy case for computational social science with

publicly available internet data. Despite later controversy over the performance of

“Google Flu Trends” [Lazer et al., 2014], there is now a rich literature on using

online search data to better model the spread of disease, as well as other public

health concerns such as suicide [Kristoufek et al., 2016]. We discuss this literature

further in Chapter 6, as the final chapter of this thesis builds on it directly by using

Google search data to improve nowcasts of chikungunya incidence.

Researchers very soon started using Google search data in wider applications

across both public health and economics. Tkachenko et al. [2017a] show how Google

Trends, the volume of Google searches for a given topic, can improve surveillance

of type 2 diabetes in the UK. Choi and Varian [2009b] show that Google Trends

(the volume of Google searches for a given topic) could help nowcast over several

economic indicators, such as consumer confidence, car sales and travel patterns (see

also Botta et al. [2020b]). They later extend this analysis to claims for unemploy-

ment benefits [Choi and Varian, 2009a]. While Choi and Varian [2009b] focused pri-

marily on the US, other studies confirmed these results held in Israel [Suhoy, 2009],

Germany [Askitas and Zimmermann, 2009] and the UK [Chamberlin, 2010]. These

analyses quickly attracted interest from policymakers, with the Bank of England

publishing its own report on the potential use of internet search data for macroeco-

nomic analysis [McLaren and Shanbhogue, 2011].

Google Trends has also been used widely in a closely related field – finance

– for more granular analyses. Preis et al. [2010] show that the volume of Google

searches for companies in the S&P 500 is predictive over trading volume for their

stocks. Da et al. [2011] similarly find that Google searches are predictive over stock

prices for Russell 3000 companies between 2004 and 2008. In a later analysis, Preis

et al. [2013b] find that including Google Trends data for key terms in finance in a

trading strategy can outperform market returns. The early, and continued, popular-

ity of Google Trends may be due to ease of access, with Google providing a public

API. Furthermore, search engine data is relatively easy to engineer into a useful

format, without needing novel methods from machine learning (although they may

be necessary to help identify the most relevant terms as in Curme et al. [2014]). The

final two chapters of this thesis show that search engine data continues to provide

useful insights, when analysing both illegal drug market trends and the spread of

disease.

Computational social science soon expanded to include other forms of text

8



data from the internet, such as Twitter. The literature on using Twitter data has

benefited greatly from developments in computer science techniques for analysing

text, referred to as natural language processing [Manning and Schutze, 1999]. Paul

and Dredze [2011] show that the volume of flu-related tweets can help nowcast the

CDC’s weekly flu estimates. Aramaki et al. [2011] quickly build on this study by

showing that extracting the sentiment of the tweet, using techniques from natu-

ral language processing, adds further value in nowcasting the flu. Gomide et al.

[2011] also show value from adding Twitter sentiment to estimates of dengue fever.

Similarly, Bollen et al. [2011] show that analysing the sentiment of large volumes

of tweets in the US may be predictive over the level of the Dow Jones Industrial

Average (DJIA), with more negative sentiment on Twitter foreshadowing falls in

the DJIA. Procter et al. [2013] show the potential for using Twitter data to track

the 2011 London riots. However Zubiaga et al. [2018] show the potential for ru-

mours to spread quickly across Twitter, which may reduce its value for nowcasting.

Nevertheless, analysis of the actual text in tweets is not always necessary to extract

useful information. In a particularly innovative study, Botta et al. [2015] exploit the

location metadata from tweets to show that the volume of tweets from a football

stadium can help with instant estimates of crowd sizes.

Wikipedia provides another form of text data that can be relatively simple

to include in modelling. There is a public API for the daily volume of Wikipedia

views for each page [Wikipedia API, 2019], so researchers can collect useful data

without needing to analyse the text of the pages themselves. Moat et al. [2013] find

a negative correlation between Wikipedia page views for DJIA companies and their

share prices. They tie this finding to loss aversion: traders are more likely to search

for information when making a decision that would book a loss (see also Moat et al.

[2016]). Curme et al. [2014] build on this analysis by using a combination of Google

and Wikipedia data to show a link between searches for events in business and pol-

itics with subsequent moves in stock markets. In another trading application, El-

Bahrawy et al. [2019] show that Wikipedia page views for cryptocurrencies, such as

Bitcoin, can be used to improve the profitability of trading strategies. Wikipedia

data has also been used to predict economic performance on a more granular level.

Mestyan et al. [2013] use Wikipedia data to predict box office performance for newly

released films. They find that the daily volume of Wikipedia page views for each

film is predictive of box office revenues, over and above traditional indicators such as

number of theatres distributing the film, for up to a month before the film’s release.

An issue with some of the previous literature is that the value from adding

Wikipedia data may not be independent of similar Google data. McMahon et al.
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[2017] document that Wikipedia page landings are often the direct result of a Google

search, as the Wikipedia page is often the first search result. For example, Google

searches for a given film may be highly correlated with views for its Wikipedia page.

If so, there may be limited predictive value from adding Wikipedia page values to

a model over and above simply adding the Google Trends data for its topic. In

Chapter 5 of this thesis, on predicting drug demand with Wikipedia page views, we

are mindful of these issues and present analysis using both Wikipedia page views

and Google Trends.

An advantage of using Wikipedia views for some topics, relative to Google

searches or Twitter data, may be the relative lack of language ambiguity. For ex-

ample there may be multiple Google searches related to certain diseases, depending

on their symptoms, but there is only one Wikipedia page for the disease. Generous

et al. [2014] show that Wikipedia views can be used to improve surveillance of a

range of diseases. They successfully use the language of each page as a location

proxy for the viewer to improve the geographic granularity of their analysis. For

example, they can assume that Portuguese language page views for dengue fever

are from Brazil, whereas Thai page views are from Thailand. In Chapter 5 of this

thesis, we similarly exploit the language of each Wikipedia page to add a geographic

dimension to our analysis of drug markets on the darknet.

Computational social science has also been able to extract text data at scale

from the migration of traditional print media online. Alanyali et al. [2013] find a

positive relationship between daily mentions of a company in the Financial Times

and its daily stock market trading volumes. This provides novel empirical support

that financial news is a primary driver of financial markets. Curme et al. [2017] find

that the diversity of news in the Financial Times around a company is predictive

over trading volumes. Pǐskorec et al. [2014] find a significant correlation between the

cohesiveness of financial news and volatility of national stock indices. Souma et al.

[2019] show the that stock price reactions to news can be used to train sentiment

analysis models, which can then quantify the sentiment of future news articles.

Previous studies that tested hypotheses on the effect of news, such as Chan [2003],

had to use manually assembled datasets. Computational social science now allows

us to evaluate these issues at a much greater scale. However, many studies do not

go further than documenting correlations, which is not always sufficient to show a

new data source has predictive value in practice. In this thesis, novel data sources

are evaluated in a framework designed to assess practical nowcasting value against

appropriate baseline models.

As well as traditional media, researchers have made extensive use of data
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from social media platforms. Facebook is the most widely used social network in

the world, with 68% of US adults regularly using the platform as of 2018 [Smith and

Anderson, 2018]. Much of the research using Facebook data has been in political

science. Aral and Walker [2012] obtained data on 1.3 million Facebook users to

analyse which demographics are more susceptible to peer pressure. They find that

younger users and males are more easily influenced, which may have implications

for policies aimed at countering the spread of negative behaviours online such as ex-

tremism. Bakshy et al. [2015] find that Facebook leads to users being less exposed

to diverse sources of news. Bond et al. [2012] show that voters were directly influ-

enced in the 2010 US congressional elections by messages they received on Facebook.

However, Facebook now lacks a public API which may limit its use to researchers

in computational social science. It may instead be more useful as a way to recruit

participants for more traditional data collection [Kosinski et al., 2015].

2.2.2 Use of image data

Other social networks have, at least temporarily, had public APIs, making their data

easier to collect at scale. The photo-sharing site Flickr has a public API, which has

led to a large volume of research using its data. Preis et al. [2013a] show that the

volume of Flickr images uploaded around the time of Hurricane Sandy and tagged

with the name of the hurricane may provide a proxy for the intensity of Hurricane

Sandy in New Jersey. In turn, they suggest that Flickr data may be useful for

rapid crisis response, given the real-time availability of Flickr images. Tkachenko

et al. [2017b] build on this result by showing Flickr data improves predictions of

floods. Barchiesi et al. [2015a] turn to data on the location of Flickr users over time,

inferred from photo metadata, and show a positive correlation with international

travel flows from the UK’s Office for National Statistics (ONS). Barchiesi et al.

[2015b] demonstrate a similar relationship for mobility patterns within the UK, and

Preis et al. [2020] show that the methodology can be generalised to all of the G7

countries.

Beyond mobility, Aiello et al. [2016] are able to infer the level of noise pol-

lution in London and Barcelona at high geographic resolution, by using the text in

tags from Flickr photos. Seresinhe et al. [2016] exploit text data attached to Flickr

photos to estimate the presence of street art. They show that, in London, house

prices rise more in areas in which more art is detected. More broadly, Seresinhe et al.

[2018] demonstrate that data from Flickr photos can be used to make conclusions

about the aesthetic appeal of a neighbourhood.

Prior to 2016, Instagram also had a public API that researchers used. Sim-
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ilarly to the Barchiesi et al. [2015a] analysis of international travel flows, Weilen-

mann et al. [2013] show that Instagram uploads from museums can be used to

analyse attendance. Botta et al. [2020a] demonstrate that the volume of Instagram

photographs from a given location can provide an instant indicator of crowd size.

These studies are remarkable as they generate useful data from images without ac-

tually using any of the image content, relying only on metadata such as timestamp,

location and tags.

There has been rapid growth recently in studies classifying the content of

the images themselves, due to key developments in an area of machine learning

called “deep learning” [LeCun et al., 2015]. In 2012, Krizhevsky et al. [2012] made

a major breakthrough in the speed of training more complex image classification

models called “convolutional neural networks” (CNNs). This led to a dramatic

expansion of research using image data. For example, Alanyali [2018] is able to

train a CNN to detect protests from Flickr image uploads. This built on previous

work tracking protests using only the tags on images, rather than the content of the

images themselves [Alanyali et al., 2016].

In one particularly innovative paper, Seresinhe et al. [2017] combine two

novel data sources – imagery and crowdsourced reviews of image “scenicness” – to

analyse, at scale, what makes landscapes attractive. Previous research using images

had been mostly restricted to analysis of image colour. For example, landscape

studies found that images with green or blue areas tend to be more attractive, as

they usually represented forests or bodies of water [Ward Thompson et al., 2012;

Triguero-Mas et al., 2015]. Seresinhe et al. [2017] were able to go further, using

CNNs to extract specific features of images and therefore go beyond pixel colour.

For example, they find that areas with man-made features, such as castles, were often

highly attractive, despite being less green and blue. On the other hand, people often

rated bland grassy scenes unattractive, despite being heavily green. These findings

have direct policy relevance, given the evidence for a connection between people’s

wellbeing and their environment [Arriaza et al., 2004; Real et al., 2000; Seresinhe

et al., 2015, 2019], and related policy trade-offs around the placement of onshore

wind turbines [McKenna et al., 2021]. In Chapter 5 of this thesis, we also combine

two novel sources of data – darknet market reviews and Wikipedia page views – to

shed light on an important policy issue.

Advances in computational social science have led to a well-developed lit-

erature on using satellite imagery. Satellite imagery has been popular among re-

searchers, particularly in economics, because it is available at high geographic res-

olution, in real-time and at low cost [Donaldson and Storeygard, 2016]. This has
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allowed researchers to measure variables at a scale that would previously have been

prohibitively costly. Henderson et al. [2012] is arguably the seminal study in the

field. Using satellite imagery, they measure the amount of light emitted at night

time across a range of countries. They show that including the light data improves

measurement of GDP growth for countries with poor data quality, consistent with

earlier initial findings on light data from Chen and Nordhaus [2011]. The high geo-

graphic resolution of their light data allows them to construct a higher geographic

resolution measure of GDP growth. They show this can provide new evidence on

outstanding development questions, such as the impact of urbanization on growth

and the impact of malaria prevalence on growth. While previous studies had used

satellite data [Battese et al., 1988; Sutton et al., 2007; Sutton and Costanza, 2002],

this was the first study to formally incorporate satellite data into a statistical frame-

work for economic measurement.

The satellite data literature has since developed to include faster measures

of other indicators, particularly in developing countries where data is more likely to

be poor. Harari [2020] uses satellite imagery to measure the geometric properties

of Indian cities, such as compactness and transport accessibility, for which large-

scale data did not previously exist. They are able to provide evidence for a causal

link between these properties and differing growth rates across cities. Jean et al.

[2016] go further in complexity, by applying deep learning to satellite imagery in

order to extract features for predicting poverty at high geographic resolution. Other

studies have used satellite data to provide rapid measures of other variables that

are important in economic development, such as deforestation [Burgess et al., 2012,

2019] and pollution [Jayachandran, 2009].

There is a nascent research deploying more complex techniques to derive mea-

sures from satellite images that are useful for developed countries. Law et al. [2019]

analyse the issue of measuring house prices in London. They use a convolutional

neural network (CNN) to extract important features, such as housing density and

proximity to transport. They find that models measuring prices that included fea-

tures extracted from satellite imagery outperformed those that used only traditional

data, such as local crime rates and school quality. Law et al. [2019] also use images

from Google Street View, building on previous work documenting the value of these

images for statistical measurement [Gebru et al., 2017]. In Chapters 3 and 4 of this

thesis, our methods to extract useful features from unstructured high-dimensional

aircraft location data, build on the efforts made to work with satellite data so far.

This thesis uses similarly rapid developments in other areas of computer

science for dealing with big data. For example, the aircraft location dataset we
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use in Chapters 3 and 4 is approximately 50 terabytes. Analysing data at this

scale is only now possible due to recent advances in compute power [Moore, 1998;

Waldrop, 2016] and the MapReduce technique for distributing workloads across

many cores [Dean and Ghemawat, 2008]. We are also able to use new data collection

methods, such as web scraping, to leverage new sources of data such as feedback

from darknet markets, where the original format is raw HTML [Dittus et al., 2018].

Over the following chapters, we show the potential for leveraging these cutting-edge

techniques, along with the above developments in computational social science, to

improve nowcasting in economics and public health.

2.3 Nowcasting in economics

2.3.1 Methodological developments

While now used in many disciplines, the term “nowcasting” was first coined in eco-

nomics. In a seminal paper, Giannone et al. [2008] study the problem of GDP

releases. This important statistic was released only quarterly, despite the increasing

availability of more frequent releases of other data sources. Giannone et al. [2008]

develop a framework for updating estimates of current GDP using other higher fre-

quency series. Despite there being some limited, earlier literature on using higher

frequency data [Evans, 2005], Giannone et al. [2008] was the first study to propose

a formal nowcasting framework that could integrate a general number of higher fre-

quency series at an arbitrary frequency. Giannone et al. [2008] find that integrating

higher frequency economic data, such as monthly business sentiment surveys, sig-

nificantly reduces nowcast errors. Soon after, real-time estimates for Chinese GDP

were also derived from directly applying this method [Yiu and Chow, 2010].

There is now an extensive literature in macroeconomic nowcasting, which is

mostly focused on how to integrate higher frequency conventional data [Kapetan-

ios and Papailias, 2018]. Many papers have used Mixed Data Sampling (MIDAS)

methods, developed by Ghysels et al. [2004] for models including time series at dif-

ferent frequencies. This technique has been extensively applied to Euro area GDP,

which is released at monthly frequency, with a particular focus on how to incorpo-

rate surveys of business and consumer confidence [Angelini et al., 2008; Giannone

et al., 2009]. Another strand of the literature focuses on how to use asset price

data, which is even higher frequency. Andreou et al. [2013] integrate daily financial

asset prices into US GDP estimates. Aastveit and Trovik [2012] find that daily Oslo

Stock Exchange prices, aggregated to monthly frequency, are the most important

feature in their model for nowcasting Norwegian GDP. The above literature has seen
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much development statistically, but is still generally focused on inclusion of existing

economic indicators, rather than newer sources of data.

Central banks, recognising the value of accurate nowcasts, have also devel-

oped their own nowcasting models. The Bank of England nowcasts both UK [Bell

et al., 2014; Anesti et al., 2017] and global GDP growth [Kindberg-Hanlon and Sokol,

2018]. Several branches of the US Federal Reserve independently nowcast US GDP

growth [Doh and Bae, 2019; Atlanta, 2021] There is therefore a clear policy demand

for better nowcasting models. We include even higher frequency data to improve

GDP nowcasts – our aircraft location dataset often receives multiple observations

for a given aircraft within a second.

2.3.2 Use of online data in economics

There have been more recent studies that begin to integrate unconventional data

sources into economic nowcasts. This literature arguably begins with Ettredge et al.

[2005]. They analyse the US unemployment rate, published monthly by the Bureau

of Labor Statistics (BLS). They show that an aggregate of weekly online job search

activity was significantly positively correlated with the unemployment rate. How-

ever, they were limited by the short time series of their data to documenting an

in-sample correlation, rather than a fuller statistical analysis of whether web search

data can predict unemployment out-of-sample.

The use of online data became more widespread in economics after the pub-

lication of Choi and Varian [2009b]. They use Google Trends data to improve

nowcasts for several variables outside of GDP. For example, they show that Google

searches for motor vehicles are indicative over monthly sales of motor vehicles data,

as published by the US census bureau. Their results extend to services, too. Hong

Kong publishes monthly statistics on visitors by country of origin. Choi and Varian

[2009b], exploiting the geographic dimension of Google Trends, show that Google

searches for vacations to Hong Kong from a given country are indicative of arrivals

from that country. Consistent with the initial findings of Ettredge et al. [2005],

they also show that searches for jobs and unemployment benefits are indicative of

monthly unemployment claims. Choi and Varian [2009b] have enough data to eval-

uate models out-of-sample against a sensible baseline autoregressive model, rather

than simply documenting a correlation, so this is arguably the seminal study in

nowcasting with novel data for economics. Goel et al. [2010], when using Google

search data to predict consumer behaviour, are similarly careful to evaluate model

performance against a sensible baseline. For example, when predicting revenue of

major film releases, the baseline model includes the budget of the film and the num-
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ber of screens in which the film opened in. In this thesis, we always evaluate model

performance out-of-sample in comparison to relevant baseline models.

Many studies since Choi and Varian [2009b] have followed suit in using

Google data to nowcast unemployment. Unemployment may be a particularly good

choice of macroeconomic variable to nowcast as, given its personal nature, there

is likely a stronger link with internet search. Askitas and Zimmermann [2009] find

similar results for Germany, although they are restricted by their sample size to doc-

umenting a positive correlation rather than an out-of-sample performance analysis.

Pavlicek and Kristoufek [2015] find mixed results for the Visegrad Group, which

they attribute to differing degrees of internet usage across the countries. Fondeur

and Karamé [2013] find that Google searches are a significant indicator of youth

unemployment in France, and including them in a nowcasting model reduces out-

of-sample errors relative to the prediction based on past unemployment data alone.

Their model may perform particularly well because the young are most likely to

use the internet as a job search tool [D’Amuri, 2009]. D’Amuri and Marcucci [2017]

focus on US unemployment during the great recession. They find that Google-based

models generally outperform professional forecasters out-of-sample, and their per-

formance is particularly strong at the beginning of the recession. In Chapter 3 of

this thesis, we also focus specifically on model performance during times of high

volatility, which is when rapid estimates of macroeconomic variables are likely of

most value to policymakers.

The literature has extended to further macroeconomic variables, such as

inflation. One innovative strand of this research is web-scraping online prices, which

are useful for nowcasting given their real-time availability and widespread coverage.

The Billion Prices Project [Cavallo and Rigobon, 2016] demonstrates the potential

of web-scraping for generating useful, new data at scale. The authors scraped 50

million online prices across 30 different countries at a daily frequency for eight

years. This proved effective for nowcasting prices at high frequency, and making

international comparisons. Cavallo [2017] finds that online prices tend to mirror

offline prices, therefore they serve as an accurate proxy for nowcasting the overall

price level. In separate studies, statistics authorities in both the UK [Breton et al.,

2015] and Netherlands [Griffioen et al., 2014] have also found that clothing, a major

component of their Consumer Price Index (CPI), can be nowcast using clothing

prices scraped from the internet.

Further studies used scraped data from the Billion Prices Project in a range

of applications, both nowcasting and to analyse other issues in economics. Cavallo

et al. [2018] show that online prices from similar goods across different countries
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can yield rapid estimates of changes in Purchasing Power Parity, therefore helping

to nowcast changes in real consumption across countries. Cavallo [2016] uses on-

line price data to provide new evidence that price changes tend to be infrequent,

and previous results documenting frequent changes are driven by measurement bias.

Data from the Billion Prices project has been further used for policy evaluation. For

example, Cavallo et al. [2019] shows the burden of US tariffs on Chinese goods fell

almost entirely on US importers, rather than Chinese exporters. Another study

showed that currency unions, such as the Eurozone, effectively reduce price differ-

ences across countries [Cavallo et al., 2014]. In Chapter 4, we make recommendations

for how our similarly novel aircraft location data may be applied to further topics

in economics.

There is growing appreciation among economic policymakers for the value of

online data. From May 2020, the Bank of England began including Google trends

data in their quarterly Monetary Policy Report [Monetary Policy Report, 2020].

They document sharp drops in Google searches for hotels, cars and theatres as early

indicators of the economic impact from Covid-19. The Chicago Federal Reserve

have also considered Google data in their nowcast of unemployment claims for the

current crisis [Brave, 2020]. Their initial results show that Google search data is

both an economically and statistically significant indicator of the geographic distri-

bution of unemployment. In this thesis, we show that inclusion of yet wider data

sources, namely aircraft location data and darknet reviews, are useful to economic

policymakers. We provide the first evidence that real-time location data from air-

craft may be a leading indicator for aviation’s contribution to GDP. We also show

the value of novel online data for estimating market trends – specifically that drug

sales scraped from darknet markets and Wikipedia page views for each drug may

be useful for nowcasting trends in drug demand. We build on the previous method-

ological literature by ensuring models are evaluated out-of-sample against relevant

baselines, rather than simply documenting a correlation between a novel data source

and an economic statistic.

2.4 Nowcasting in public health

2.4.1 Use of online data for monitoring illicit drug consumption

As discussed in the previous section, Chapter 5 of this thesis nowcasts drug demand

using a combination of different online data sources. As well as being relevant to

economic policymakers, accurate knowledge of changes in drug demand are useful

for public health authorities too. Rapid changes in drug use are often characterised
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as “epidemics” in their own right, such as the US opioid crisis [Frank and Pollack,

2017; National Institute on Drug Abuse, 2019]. However, these rapid changes in

drug use are often hard to monitor. Authorities have traditionally relied on annual

surveys, for example the United Nations Office on Drugs and Crime (UNODC)

World Drug Report [United Nations Office on Drugs and Crime, 2019]. The low

frequency of these statistics may be insufficient for authorities to respond to rapid

changes in drug use, such as the US Fentanyl epidemic, which arguably took off

within a year [Higham et al., 2019].

There is a nascent literature in public health on better nowcasting drug use

with online data, which is generally available much faster than the official surveys.

Perdue et al. [2018] consider the issue of tracking growing popularity of new sub-

stances, such as cannabinoids and opioids, as measured by the annual Monitoring

the Future (MTF) survey in the US. The lack of high frequency data is a particular

issue for monitoring novel substances, as their growth can be especially fast and

they may not show up on traditional drug surveys at all. Perdue et al. [2018] there-

fore hypothesise that there may be value in using Google Trends data to improve

monitoring of these substances. They extract Google Trends data related to several

categories of drugs and aggregate to annual frequency to match the MTF surveys.

They find significant, positive correlations between Google Trends and drug con-

sumption in most cases. This provides evidence that Google Trends may be a useful

fast indicator of changing drug consumption. However, the study is limited by the

short time series of annual frequency data available to the authors. For example,

they estimate the correlation for the “Bath salts” drug category with just five data

points. This limits their ability to go beyond correlation in their analysis.

Balsamo et al. [2019] analyse the problem of monitoring changing levels of

opioid abuse across US states. The US CDC publishes annual survey data from

each state monitoring this issue. Balsamo et al. [2019] generate a novel data source

from comments about opioids on the large online forum, Reddit. These comments

have location metadata, so the authors are able to identify which state a comment

is from. They find a significant positive correlations between the volume of Reddit

comments about opioids from a given state, and the level of opioid abuse in that

state. This suggests online data may be useful for monitoring geographic differences

in drug use over time. While the sample size is larger in this study, as they have data

for 50 states, they too are limited to documenting a correlation by having just two

years of data available. The short time series of their data means they are unable

to build a nowcasting model to assess the value of their online data.

Zheluk et al. [2014] analyse the issue of demand for the Russian opioid
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Krokodil. They collect data on court appearances for Krokodil possession as a

proxy for demand between 2010 and 2012. They find a strong positive correlation

between Google searches for Krokodil-related topics and court appearances. While

having access to data from eight Russian regions, they too are limited to document-

ing a correlation by the short time series of the court appearance dataset. In an

innovative study, Kapitány-Fövény and Demetrovics [2017] use web-search data to

analyse cross-elasticity between traditional drugs and novel substances, which may

act as substitutes. They analyse Hungarian interest in Mephedrone, a stimulant

that was briefly legal but banned in 2011. By assuming monthly web search data

is a proxy for demand, they find evidence that Mephedrone was being used as a

substitute for MDMA. However, they concede that more evidence is required that

web search is a proxy for demand, noting that searches for Mephedrone spiked after

it was banned despite a fall in demand.

In Chapter 5 of this thesis, we construct a high-frequency time series of drug

demand with data scraped from the darknet. This allows out-of-sample evaluation of

a nowcasting model with online data against a autoregressive baseline. No previous

papers had access to a long enough time series of data for such an evaluation. We

therefore build on the previous literature by providing the first evidence that online

data can help nowcast drug demand out-of-sample. Furthermore, this thesis is the

first study, to our knowledge, focusing on nowcasting demand on the darknet more

generally.

2.4.2 Use of online data in epidemiology

Epidemiology is one of the academic fields with the most well-developed nowcasting

literature. Researchers have used time series methods for predicting the spread of

disease for over 20 years [Allard, 1998], which can be effective independent of the

underlying causal process for why the disease spreads. Better nowcasts of disease

spread are highly valuable, as there is a very clear policy case for having the most

up-to-date statistics on disease spread. As recently underlined by the Covid-19 cri-

sis, policymakers often have to make crucial decisions, such as whether to impose

stricter lockdown measures, without accurate, current data on the prevalence of

disease [Mavragani, 2020]. Earlier, more effective interventions have already been

shown to reduce mortality rates across a range of diseases, such as arboviruses [Ol-

liaro et al., 2018], influenza [Longini et al., 2005; Ferguson et al., 2005] and Covid-

19 [Sun et al., 2020; Galea et al., 2020].

Ginsberg et al. [2009] is arguably the seminal study in nowcasting with online

data. The CDC release weekly estimates of influenza incidence across regions in the

19



USA, with a lag of one week. Ginsberg et al. [2009] collect Google search data

for symptoms of influenza, aggregated to weekly frequency. They show very strong

positive correlations between the Google search data and influenza rates. Given

the real-time available of Google search data, they conclude that their modelling

approach can generate accurate estimates of influenza prevalence with a lag of just

one day, as opposed to the one week lag in the CDC data. This modelling approach

came to be known as “Google Flu Trends”.

The Ginsberg et al. [2009] study was highly innovative, marking the first

high-profile use of online data for disease nowcasting, but it suffered from some key

methodological limitations [Lazer et al., 2014]. Goel et al. [2010] show that a simple

autoregressive baseline model, where they estimate the current period’s influenza

incidence using the previous period, performs just as well as the Google Flu Trends

model. Moreover, the Google Flu Trends model performance may have declined over

time. Copeland et al. [2013] find the Google Flu Trends model performed relatively

well until the 2013 flu season, when it dramatically overestimated the size of the flu

outbreak in the USA. They attribute this to heightened media coverage of the flu

that year, and that their model had not been updated since 2009. This highlights

the need for online search data to be used as a complement, rather than a substitute,

for official data, and that time-series models should be updated as new data becomes

available. Preis and Moat [2014] incorporate both these lessons into their modelling

approach. They first build a baseline autoregressive model that nowcasts current flu

incidence using the past history of flu incidence. They then augment this model with

real-time data on the current volume of Google search queries for flu-like symptoms.

They refit their model each week as new data arrives, therefore allowing it to adapt

over time. Using this approach, they show that including Google data alongside

official data improves model accuracy by over 14%. Yang et al. [2015] further build

on Google Flu Trends, with an approach called Autoregressive Google (ARGO) by

explicitly modelling seasonality and allowing the weight on different search terms to

vary over time. In Chapter 6 of this thesis on nowcasting chikungunya incidence,

we similarly build a model that augments an autoregressive baseline, rather than

replacing it altogether, and adapts over time as new data arrives.

There is now also an extensive literature on using online data to nowcast

the incidence of dengue, the most prevalent arbovirus globally [Wilder-Smith et al.,

2017]. Chan et al. [2011b] extend the Google Flu Trends methodology to tracking

dengue fever across five countries, with a modelling approach called Google Dengue

Trends (GDT). They find strong positive correlations, ranging from 0.82 to 0.99, in

each country. They attribute periods of weaker performance, such as the 2005 Indian

20



dengue season, to a lack of internet access. While they validate results out-of-sample

against a “hold-out” set, they do not check their models outperform a baseline au-

toregressive model using past official data on dengue prevalence. Yang et al. [2017]

build on these results by extending their ARGO method from influenza to dengue.

They find that appropriate inclusion of Google data generally improves model per-

formance, although Google modelling is vulnerable to over-estimating outbreaks

that attract significant media attention. Gluskin et al. [2014] also find that GDT

performs well at the country-level. However, they find more variable performance

when analysing the data at a higher spatial resolution across Mexican states. In

particular, they find that local weather is an important predictor, as GDT performs

worse in areas with climates less suited to dengue transmission.

There have been far fewer studies using online search data to nowcast chikun-

gunya, a less-studied arbovirus, which is the focus of Chapter 6 of this thesis. Naveca

et al. [2019] analyse chikungunya incidence across regions of the Brazilian Amazon

from 2014 to 2018. They find a strong positive correlation between Google searches

for chikungunya-related terms and chikungunya case counts over time in each re-

gion. The timing of the peak of the 2017 epidemic also aligns with the peak of

Google searches. However, they are limited to documenting a correlation, which

is not sufficient evidence alone that Google search data is valuable for nowcasting

chikungunya over and above the history of past case counts alone. Chapter 6 of this

thesis therefore builds on the previous literature by providing the first evidence of

the value of online search data for monitoring chikungunya in a rigorous nowcasting

framework.

2.4.3 Issues with incomplete data

The vast majority of the epidemiological nowcasting literature assumes complete

data on previous periods is reliably available at the time of making the nowcast.

This may be a reasonable assumption in some cases, such as nowcasting the weekly

CDC influenza case counts, where data is entered very regularly. However for now-

casting arbovirus incidence in developing countries, such as in Yang et al. [2017], this

assumption may not hold. There is substantial literature documenting that dengue

fever is prone to delays and revisions in reporting [Madoff et al., 2011; Runge-

Ranzinger et al., 2008]. This means that, when nowcasting the current period in

practice, we also have to estimate disease incidence in previous periods, rather than

conditioning on it. Therefore, models that condition on accurate knowledge of dis-

ease incidence in previous periods may not be usable in practice for nowcasting

arboviruses in developing countries. In Chapter 6 of this thesis, we have access to
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case-level data on both the date of diagnosis and date of entry into the monitoring

system for arboviruses. This allows us to construct a model that is operationally

usable for nowcasting chikungunya incidence.

There is now a nascent literature in nowcasting the spread of dengue in

the presence of incomplete data. A research team based in Rio de Janeiro has

developed a system called InfoDengue [Codeço et al., 2018]. The system, developed

by researchers at Fiocruz (a research institute linked to the Brazilian Ministry of

Health) and FGV, monitors the incidence of dengue, chikungunya and Zika across

792 Brazilian cities. InfoDengue has a nowcasting model which is updated every

week as new case data is entered. The system collects data on weather conditions

and the volume of dengue-related Twitter posts, given previous studies documenting

the predictive potential of these variables [Lowe et al., 2014; Gomide et al., 2011;

Marques-Toledo et al., 2017]. However, these variables are not currently used when

making the nowcast [Codeço et al., 2018].

The original model was relatively simple: it considered the number of cases

entered in a given week, estimates how many actual cases are missing based on

historic data and applies an uplift to nowcast the actual current number of cases.

Bastos et al. [2019] develop a new methodology for nowcasting dengue incidence,

which is now being used in InfoDengue. Their model is based on Integrated Nested

Laplacian Approximation (INLA – see Rue et al. [2009]). INLA is a Bayesian simu-

lation approach assuming an underlying Gaussian process generating observed data.

Bastos et al. [2019] show that their approach is much more accurate than the esti-

mates produced by the original InfoDengue approach. They explicitly account for

the missing data issue, using only data on past cases that had been entered at the

time of the nowcast, rather than assuming complete availability of past data. How-

ever, the Bastos et al. [2019] model uses only historic case count data - they do not

include any other variables such as online data or weather.

Mizzi et al. [2021] build directly on the Bastos et al. [2019] approach to

improving dengue estimates in the presence of missing data. They first extend the

INLA model to include the Twitter data that is provided as part of InfoDengue, and

show this improves accuracy. They incorporate a further online data source - Google

Trends for dengue symptoms - to show a further improvement in model accuracy.

They also show that including online data improves model precision, measured by

the width of the prediction intervals output by the INLA algorithm. Mizzi et al.

[2021] find that the best model includes both Google and Twitter data, although

the marginal improvement of including both is small compared to the improvement

from having just one online data source. Finally, Mizzi [2019] further improves the
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literature by extending the geographic scope of the analysis. Whereas Bastos et al.

[2019] analysed only Rio de Janeiro, Mizzi [2019] shows that online data generally

improves model accuracy and precision across 10 other Brazilian cities, although the

improvement is largest in Rio de Janeiro.

In chapter 6 of this thesis, we build directly on Mizzi et al. [2021] by showing

their approach to nowcasting in the presence of partial data, and the inclusion

of Google Trends data, improves estimates for chikungunya, as well as dengue.

This is important given the substantial overlap in symptoms between dengue and

chikungunya can make it difficult to distinguish the two diseases [Hochedez et al.,

2006]. Furthermore, we ensure all our models are evaluated out-of-sample against a

rigorous baseline, rather than being limited to documenting a correlation.

2.5 Previous work using aircraft location data and data

from darknet markets

2.5.1 Previous work on darknet data

Scraping of online reviews is a a particularly relevant strand of research, given the

focus of Chapter 5 on data from darknet markets. The online review aggregator,

Yelp, provides high-time frequency data at a high geographic resolution, and has

therefore been used in many recent studies. Glaeser et al. [2017] analyse whether

Yelp data can help nowcast local economic changes, as measured by the annual US

ZIP code level County Business Patterns dataset. They find that growing numbers of

Yelp reviews are indicative of faster local business growth, even after controlling for

prior business growth in the region. Other studies have dug deeper into the content

of the Yelp reviews themselves. Luca and Zervas [2016] find that restaurants are

more likely to commit review fraud if facing increased competition, which may have

implications for business propensity to break laws more generally in response to

increased competition. At a more micro-level, Chong et al. [2017] scrape Amazon

reviews to analyse whether they contain useful information for predicting product-

level demand. They find that both the volume and positivity of the reviews are

relevant, but the performance improvement relative to the model with no review

data is small. See-To and Ngai [2018] find similar results when analysing reviews on

Chinese e-commerce sites. This thesis builds on the scraping literature using online

reviews by incorporating a data source used rarely before in economics and never in

public health - reviews from darknet markets.

It is unsurprising the literature on darknet markets is sparse, given that
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the markets themselves are a fairly recent innovation. Christin [2013] was the first

study to use scraped data from the markets, and their study is mostly a descriptive

analysis of how the first big darknet market, Silk Road, evolved over time. Soska

and Christin [2015] then documents how the darknet markets that followed Silk

Road evolved. Use of darknet data in economic research has been very rare, so

far. Bhaskar et al. [2019] use sales data from the darknet to analyse the heightened

importance of reputation in black markets, given the lack of legal enforcement to

resolve disputes. Červený and van Ours [2019] use cannabis price data from darknet

markets to gain a rare insight into differences in international drug pricing. They

find that, despite international competition between sellers, prices are still higher in

countries with higher incomes, suggesting buyers have a preference for their “home”

country.

The most relevant darknet study for this thesis is Dittus et al. [2018]. They

study the demographics of drug consumption on the darknet, and whether its exis-

tence has altered supply chains. They find that darknet demand for illicit drugs is

geographically representative of traditional demand i.e. countries with high cannabis

consumption traditionally, such as the UK, also have a relatively high share of

cannabis consumption on the darknet. This is an important finding for Chapter 5

of this thesis, as it is more useful for policymakers to be able to accurately nowcast

darknet drug demand if it is a good proxy for drug demand from traditional sources

too. This thesis therefore contributes the first study into estimating drug demand

with darknet data, which may be useful for policymakers in both economics and

public health.

2.5.2 Previous work using vehicle location data

Location data has rarely been used in nowcasting, likely due to the difficulty of

engineering such large datasets until recently. The UK Office for National Statis-

tics (ONS) has published preliminary findings on using two such data sources for

nowcasting. The first data source is UK road traffic data from Highways England

dataset, which is available after a 3-week lag [Highways England, 2022]. Rowland

[2019] measure the volume of road traffic from high-frequency sensor data around

economically important locations, such as ports. They show evidence of a positive

correlation between the volume of road activity for large vehicles and a variety of

economic measures, such as GVA and international trade. They nevertheless advise

caution with using these statistics alone to nowcast GDP, as the relationship seems

to be weaker outside of large economic events such as recessions.

The second data source is freight shipping data from the Automatic Iden-
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tification System (AIS - see Bonham et al. [2018]). The AIS records the location,

speed and heading of ships in close proximity to UK ports at high frequency. The

high dimensionality of their dataset (the raw data is reportedly one terabyte) means

it requires extensive engineering to extract useful features, such as the ship’s trajec-

tory. Bonham et al. [2018] show that the AIS data, after such feature engineering,

can help nowcast shipping delays. In turn, they speculate that these delays may

be a useful early indicator for components of GDP that are related to shipping.

However, they do not formally analyse this extension in the report, which is limited

to predicting shipping delays with the AIS data.

This thesis contributes a novel data source to the nowcasting literature: air-

craft location data from the ADS-B protocol. So far, the vast majority of literature

using ADS-B data has focussed on its originally intended application in the field of

aviation. For example, studies have used ADS-B data for improving trajectory pre-

diction [Alligier and Gianazza, 2018] and delay estimation [Calvo-Palomino et al.,

2018]. Some research has also shown that ADS-B data can help nowcast weather

conditions at high geographic resolution [Kapoor et al., 2014; Trub et al., 2018].

However, there have been few studies using ADS-B data outside of aviation. The

closest study to economics is arguably Strohmeier et al. [2018], who show that track-

ing the flights of corporate jets through ADS-B data may provide an early indicator

of merger activity. Chapter 3 therefore makes a significant contribution as it marks

the first use of location data from aircraft in nowcasting (published in Miller et al.

[2020b]). More recently, partly due to the Covid-19 crisis, more research has begun

using ADS-B data for economic measurement [Iacus et al., 2020].

Chapters 3 and 4 of this thesis build directly on the initial exploration of

shipping location data in Bonham et al. [2018]. The ADS-B dataset also records

the location, speed and heading of aircraft at high frequency. We similarly perform

extensive feature engineering when faced with a high dimensional raw dataset (my

raw data is approximately 50 terabytes) to extract useful features, such as takeoffs

and landings. We also go further in economic analysis, by testing whether these

features are useful for nowcasting economic variables, rather than leaving it to future

research. The methods in this thesis could be applied to other location data, such

as the roads data from Rowland [2019] or shipping data from Bonham et al. [2018].

2.6 Contributions of this thesis

This review has shown how recent developments in the field of computational social

science have enabled large improvements in nowcasting. There have been many

25



studies into both nowcasting methodology and inclusion of new data sources, such

as online search data, that have been applied to a range of statistics across economics

and public health. Initial results have shown potential for speeding up key statistics,

such as flu incidence, but many studies are limited to documenting a correlation

between a novel data source and a socioeconomic statistic. A correlation alone

is insufficient to show that a new data source is useful for nowcasting. In this

thesis, we evaluate models by their out-of-sample nowcast performance, rather than

correlation. We also ensure models are always evaluated against a relevant baseline,

to show that the novel data source should add value when deployed in practice

alongside existing methods to nowcast statistics.

In economic nowcasting, the methodological literature for integrating higher

frequency data into lower frequency official releases, such as GDP, is already well-

developed. However, there is scope to broaden the sources of data considered, as

most of the literature so far has focused on higher frequency economic data such as

surveys of purchasing managers and asset prices. This thesis is the first to analyse

the potential for aircraft location data to improve the speed of estimates of GDP.

We also contribute the first evidence that online data from darknet markets and

Wikipedia page views may be useful for nowcasting drug demand, which would

benefit policymakers monitoring black markets.

In nowcasting for public health, online data (particularly online search data)

has already been widely used. Much of this literature assumes complete data is

available on past incidence of a disease when nowcasting its current period incidence.

This may hold for some applications, such as monitoring influenza in the USA, where

the arrival of data in the central monitoring system is so quick that the gradual

fashion in which case data usually arrives is somewhat hidden. However, it is a

less accurate assumption for other applications, such as monitoring mosquito-borne

diseases in Brazil, a situation where data arrival is slower, and hence the gradual

delivery of the data and the inconsistent delays in reporting are much more evident.

In this thesis, we build on previous literature developing models for situations when

the arrival of data on previous disease incidence is inconsistent. We extend the

scope of diseases considered to chikungunya, for which there are, to the best of our

knowledge, no nowcasting studies yet.

26



Chapter 3

Estimating current economic

activity with aircraft radar data

3.1 Introduction

Most economic statistics, such as GDP, are released with a significant delay. Esti-

mating their current values before they are published is known as “nowcasting” [Gi-

annone et al., 2008]. As discussed in Chapter 2, there have been previous studies

using real-time internet data, from sources such as Google [Choi and Varian, 2009b;

Carriere-Swallow and Labbe, 2013; Vosen and Schmidt, 2011; Preis, Moat, Stanley,

and Bishop, 2012; Da, Engelberg, and Gao, 2011], Twitter [Bollen, Mao, and Zeng,

2011; Botta, Moat, and Preis, 2015] and Wikipedia [Moat, Curme, Avakian, Kenett,

Stanley, and Preis, 2013; Mestyan, Yasseri, and Kertesz, 2013], to nowcast economic

data. Better nowcasts are highly valuable, as major economic policy tools such as

interest rates can take up to 20 months to fully impact the economy [Bernanke and

Gertler, 1995]. When faced with shocks like the 2008 financial crisis, policymakers

must therefore respond as quickly as possible, which requires accurate knowledge

of the current state of the economy. Failure to do so has deepened past reces-

sions [Auerbach and Gorodnichenko, 2012], leading to political instability across

Europe following both the Great Depression and the 2008 financial crisis.

Aviation is a key economic sector, contributing at least 3% to GDP in the UK

and the US [Federal Aviation Authority, 2016; Oxford Economics, 2014]. Aircraft

now broadcast their location, among other data, in real-time using the Automated

Dependent Surveillance Broadcast (ADS-B) system. So far, ADS-B data has rarely

been used outside its intended application in the aviation sector. An exception is one

study that showed that ADS-B data could track corporate jets, therefore providing
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a leading indicator for certain mergers between firms [Strohmeier et al., 2018]. This

chapter analyses whether ADS-B data can help nowcast airline performance and

aviation’s direct contribution to GDP. In contrast to real-time ADS-B data, the

current statistics for these variables are published with a three month delay because

they require surveys of businesses. Faster statistics could help policymakers respond

more quickly to future economic shocks, thereby limiting their damage.

3.2 Methods

3.2.1 ADS-B data

We retrieve aircraft data from the ADS-B Exchange [ADS-B Exchange]. Commer-

cial aircraft in Europe have been required to broadcast ADS-B data since 2017 [Eu-

ropean Commission, 2011], and it has been mandatory for US aircraft since January

2020 [Federal Aviation Authority, 2010]. These broadcasts include the aircraft’s

speed and location, specified as their altitude, latitude and longitude alongside a

timestamp. Each ADS-B message also includes a six-digit hex identification code

assigned to the aircraft by the International Civil Aviation Organisation (ICAO).

Amongst other things, the ICAO code makes it possible to link an aircraft to its

operating airline by looking up the ICAO code in a corresponding database. This

pre-processing is carried out by ADS-B Exchange and the operating airline is in-

cluded in each of the resulting ADS-B records.

ADS-B messages are unencrypted, in order to be receivable by other aircraft,

which means they are available to anyone with an ADS-B receiver. The ADS-B Ex-

change collects data from thousands of receivers [ADS-B Exchange]. The resulting

database covers global flight activity (Fig. 3.1). We analyse the period from July

2016 to December 2018.

We note that coverage has improved over time, as the number of receivers

feeding the database has grown. Figure 3.2 shows how Western Europe and the

coastal USA have had good coverage since the exchange launched in June 2016.

However, coverage has notably improved in the central USA, eastern Europe and

Brazil. Much of Africa and Asia remains uncovered, limiting our ability to analyse

these regions.

The raw data we analyse contains roughly 25 billion messages. First, we

reduce this data from one row for each message to one row for each flight. Figure 3.3

shows how we identify take-offs and landings by analysing the altitude of an aircraft

over time.

We use the altitude and timestamp fields from the ADS-B messages to es-
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Figure 3.1: Recorded flight paths over the western hemisphere on 30th
September 2016. (A) In orange, we depict the locations from which at least one
ADS-B message was received by the network of receivers. (B) The network covers
large parts of the United States and in particular their coastal regions. Visual
inspection of the US east coast reveals that the land-based receivers are capable
of tracking air traffic over coastal waters too. (C) In regions within coverage but
with less dense air traffic flow, e.g. in the broad vicinity of the Caribbean Sea,
distinct flight routes emerge. The increase in coverage from 2016 to 2018 is shown
in Figure 3.2. The base layer of this map utilises the ALOS World 3D global
digital surface model provided by the Japan Aerospace Exploration Agency (JAXA),
which is available to use with no charge via https://www.eorc.jaxa.jp/ALOS/en/
( c©JAXA).

timate how many flights each aircraft makes per month. Figure 3.4 shows that,

for some aircraft, there are clear errors in altitude data. These errors could re-

duce the accuracy of our estimates of aircraft activity, so we clean the altitude data

using median filtering. To median filter, we first set a window size k = 5. For

each altitude observation at, we calculate the median of observations in the window

[at−2, at−1, at, at+1, at+2]. If the altitude is different from the median then we replace

it with the median.
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Figure 3.2: ADS-B coverage over time. This figure depicts coverage over time.
An area is highlighted in yellow if an ADS-B message was received from that lo-
cation on (A) 30th September 2016 or (B) 28th September 2018. The ADS-B
Exchange has had good coverage in Western Europe and the coastal USA since
launching in June 2016. Coverage has clearly improved across time. This improve-
ment is most noticeable in the central USA, eastern Europe and Brazil. Much of
Africa and Asia remains uncovered. The base layer of this map uses data from
OpenStreetMap ( c©OSM contributors), which is available to use with no charge via
https://www.openstreetmap.org/.

To give some numeric examples, suppose we observe the following altitude

vector for an airraft A1 = [10000, 10100, 10200, 2000, 10400, 10500, 10600]. There are

3 points that have enough neighbours to apply the median filter: a3, a4, a5.

30



●●●●

●●●●●●●
●●●●

●●●●●

●●●●●

●●●●

●●●

●●●

●●●●●

●●●●●●

●●●●

●●●●●
●●●●
●●●●●

●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●

●
●●●●●

●●●●

●●●●●

●●●

●●●●

●●●●
●
●●●

●●

●●●●
●
●●●●

●●
●●●●
●●
●●●● ●

●●

●●

●●

●●●●

●●●●

●●●

●●●

●●●

●●●

●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●

●●●●

●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●
●●●●
●●●●
●●●●●

●●●●

●●●●●●●
●●●●●●
●●●●
●●●
●●●
●●●●●●●●●●●
●●
●
● ●●●●●●●

●●●●●●

●●●●●●●

●●●●●

●●●●●

●●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●●●
●●●●●●

●●●●●●●

●●●●●●●

●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●
●●

●●●●
●●●●
●●●●●
●●●●●
●●●●
●

●

●

●
●
●
●
●
●

●

●
●
●

●
●●
●
●●
●●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●●●
●●●

●●●
●●●●
●
●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●

●●●●●●
●
●●●●●

●
●●●●

●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●

●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●

●● ●●●●●

●●●●
●●
●

●●●●●●●

●●●●●
●

●●●●●
●

●●●●●
●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●
●●●●●●
●●●●

●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●●

●●●●●●●

●●●●●●●

●

●

●●●

●●●●●●

●
●●●●

●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●

●●●● ●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●

●●●●●●

●●●●●●●

●●●●●●

●●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●

●●●●●●

●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●●
●●●●
●●●●●●

●●●●

●●●●●

●●●●●

●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●
●
●●

● ●
●

●
●

●

●
● ● ● ● ●

0

10,000

20,000

30,000

40,000

09:00 12:00 15:00 18:00 21:00
Time [UTC]

A
lti

tu
de

 [f
t]

Landing detected

Take-o� detected

Figure 3.3: The flight-counting algorithm. An example of the flight-counting
algorithm crawling through altitude data from real-time ADS-B messages. The
algorithm identifies a take-off and landing of six separate flights for this aircraft
over the course of a day. These form a new data structure, where we have one row
for each flight rather than one row for each ADS-B observation. In total we identify
67 million separate flights from July 2016 to December 2018.

• a3 = 10200: neighbours [10000, 10100, 10200, 2000, 10500] has median 10100,

so replace it.

• a4 = 2000: neighbours [10100, 10200, 2000, 10400, 10500] has median 10200, so

replace it.

• a5 = 10400: neighbours [10200, 2000, 10400, 10500, 10600 has median 10400,

so do not replace it.

The final vector Amedfilt1 = [10000, 10100, 10100, 10200, 10400, 10500, 10600]

is a more realistic take-off trajectory. Figure 3.4 depicts the impact of median

filtering on 3 aircraft over a given day. The upper panel is an aircraft with fairly

clean data, so filtering changes only 0.8% of observations. The middle and lower

panels show aircraft with less clean data, so filtering changes 1.2% and 2.8% of their

observations respectively.

Initially, there is one row for each message containing, among other fields, the

aircraft’s latitude, longitude, altitude and timestamp. To estimate monthly airline

performance, we do not need such a large volume of data. To facilitate our analysis,

we therefore reduce the data to one row for each unique flight. This contains the
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Figure 3.4: Impact of median filtering on aircraft altitude profile. The left
show the raw data, and the right show data after median filtering. The raw data
clearly contains trajectory errors, which median filtering is mostly able to correct.

aircraft’s take-off time and location, landing time and location, aircraft ID and the

airline.

Counting unique flights from the ADS-B messages is a non-trivial task.

Firstly, each aircraft can make multiple flights per day, and there is a lot of variation

depending on journey length. We show the distribution of daily flight counts per

aircraft in Figure 3.5.

There is a field in the ADS-B message identifying the aircraft, but no reliable

field to identify separate flights. We therefore created an algorithm to identify

separate flights from the raw altitude data, henceforth referred to as the flight-
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Figure 3.5: Distributions of daily flight counts for each aircraft in Septem-
ber 2018. The upper panel shows that the range is wide: many aircraft make just
one flight, but some make up to ten flights. Most of this variation is explained by
journey length, which varies systematically by airline. The lower panels show that
Easyjet aircraft, which fly short haul, make far more flights on average than Virgin
Atlantic, which also fly long haul.

counting algorithm. The flight-counting algorithm uses the aircraft’s altitude to

identify the take-off and landing of each flight. Figure 3.3 shows how we crawl

through the time-ordered altitude observations and creates a take-off if the aircraft

ascends above a certain threshold. Similarly, it creates a landing if the aircraft

descends below a given threshold. The below figures shows how the algorithm

identifies take-offs and landings for given aircraft over the course of a day. The

counting algorithm reduces the data from having a row for each ADS-B message to

a row for each flight. We identify over 67 million flights this way.

Second, the raw data is not very clean, as shown in Figure 3.4. This can

reduce the flight-counting algorithm’s accuracy. Figure 3.6 depicts the impact of

cleaning the altitude data. The left panel shows counts carried out on the raw data,
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and we can see that they are often wrong. The right panel shows more accurate

counts carried out on the cleaned data.
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Figure 3.6: Impact of data cleaning on accuracy of flight counting. The left
panel shows the counting algorithm on the raw data for given aircraft over a day.
Noise in the data causes the algorithm to identify false positives, so it counts too
many flights. The right panel shows the counting algorithm operating on the same
data after median filtering. Visual inspection suggests that the algorithm is more
accurate after cleaning.

Even after filtering, the altitude data still has occasional errors. To minimise

their impact, we introduce some heuristics to the algorithm. If a take-off (landing)

is recorded, we stipulate a lag of 30 minutes before the aircraft can land (take-off)

again. We select this lag as a reasonable minimum journey time for commercial

flights. Figure 3.7 illustrates how adding the lag heuristic makes the counting algo-
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rithm more robust to any residual noise in the data.

10.00 14.00 18.00 22.00
Timestamp

0

10000

20000

30000

A
lti

tu
de

No heuristics

10.00 14.00 18.00 22.00
Timestamp

30 minute action lag

Figure 3.7: Impact of adding a heuristic that enforces a lag between ac-
tions. This figure demonstrates the importance of enforcing a lag between recording
actions for an aircraft. Even after median filtering, there may be residual issues with
data quality. The left figure shows these issues can lead to recording of multiple false
positives, counting six flights versus a true count of four. The right figure shows
that enforcing a lag of 30 minutes between actions can help deal with residual data
quality issues, with the algorithm correctly counting four flights.

Finally, we set the landing altitude at 10,000 feet, which is much higher than

the take-off altitude of 1,000 feet. This is to minimise the impact of missing data

on the algorithm’s accuracy. Figure 3.8 shows that higher landing thresholds are

much less vulnerable to missing data, although they record landing times slightly

too early. We set the take-off threshold to pick up as many take-offs as possible

while accounting for the issue that some airports are above sea level. We would

not want to record planes that are moving on the ground, while sending ADS-B

messages, as take-offs.

Applying this method, we extract 67 million separate flights and record their

take-off and landing time as well as corresponding locations. Next, we aggregate

these flights by month and airline to generate estimates for published airline statis-

tics. This further reduces our dataset to 303 monthly airline flight counts for the

UK, and 405 for the US. We include the largest 13 UK and 15 US airlines, with the

cut-off for airline inclusion set at 1% of total air traffic in each country. Overall, our

ADS-B data captures 83% of UK flights and 41% of US flights since July 2016.
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Figure 3.8: Impact of raising the landing altitude threshold. This figure
demonstrates the importance of setting a landing altitude threshold well above sea
level. The depicted aircraft makes six flights over the course of the day. The
left panel shows that a low altitude threshold causes the algorithm to miss several
landings, counting only two flights. The right panel shows that raising the altitude
threshold helps correct this, as the algorithm now records six flights.

3.2.2 Published aviation statistics

Both the UK [Civil Aviation Authority, 2020] and US [Federal Aviation Authority,

2020] aviation authorities publish monthly airline statistics. They contain a range

of performance indicators, such as flight volume and capacity utilisation, but are

currently released with a three month delay. Figure 3.9 depicts the monthly per-

centage change in both the airline statistics and in flight volumes calculated using

the ADS-B data. Visual inspection suggests there is a strong correlation.

However, there is seasonality for both countries. Figure 3.10 shows the level

of both series. There are consistently more flights in summer, likely due to school

holidays, than winter. Figure 3.11 shows that there is no obvious seasonality in

annual percentage changes. We account for this seasonality by transforming longer

time series into annual percentage changes. Figure 3.11 shows this effectively de-

seasonalises the data.

Finally, we collect economic data from the UK Office for National Statistics

(Office for National Statistics) and US Bureau of Economic Analysis (United States

Bureau of Economic Analysis). Both the ONS and BEA publish a GDP series that is

split by industry, from which we consider air transport. The UK series is a monthly

time series dating back to 1997, and the US series is a quarterly time series dating

back to 2005.
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Figure 3.9: Comparing official aviation statistics to measures derived from
ADS-B data. Plots of the percentage change in official flight count and ADS-B
flight count for six UK and US airlines. The ADS-B estimate of the monthly change
tracks the official statistics very closely, although there is some variation in accuracy
across airlines. We suggest the two most likely sources of error are the database that
maps aircraft to airline, and imperfect coverage of the ADS-B data.
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Figure 3.10: Total flights series in levels. This plots depicts aggregated flight
volumes in the levels space. Data is from official statistics on flight volume, reported
by airlines. The upper panel depicts UK aggregate flight volume over time. The
lower panel depicts US aggregate flight volume over time. There is clear seasonality
in the aggregate series, with consistently more flights in summer than winter.
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Figure 3.11: Total flights series in annual percentage changes. This plots
depicts aggregated flight volumes after transforming to annual percentage changes.
Data is from official statistics on flight volume, reported by airlines. The upper panel
depicts the annual percentage change in UK aggregate flight volume over time. The
lower panel depicts the annual percentage change in US aggregate flight volume over
time. The transformation successfully de-seasonalises the data.

When analysing these series, we consider key time series properties, such as

stationarity. Analysis of nonstationary series can lead to spurious conclusions, so

it is important to transform series into a stationary space prior to analysis. Figure

3.12 depicts this visually, and these series both fail to reject the null of the ADF

test. Figure 3.13 shows that converting these series to annual percentage changes

makes them far more stationary. Both series now clearly reject the null of the ADF

test, with p-values less than 0.01.

We considered using other data sources in the economic nowcasting model,

such as the Purchasing Managers Index (PMI). These are released at higher fre-

quency than GDP and have been shown to add value in prior nowcasting papers [Gi-

annone et al., 2008]. However, here we are only nowcasting aviation’s contribution

to GDP, rather than GDP as a whole, and we cannot subset the PMI to just the

aviation sector. The ADS-B data is a very strong domain match in this case, for

which we did not feel there were any alternatives available in real-time. Therefore,

we did not decide to include other data sources, such as the PMI, in our GDP model.
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Figure 3.12: GDP series in levels. This plot shows aviation’s contribution to
GDP. The upper panel shows the UK’s contribution, and the lower panel shows the
US. We perform an ADF test for stationarity on both series. In neither case can
we reject the null hypothesis of nonstationary data. Therefore, inference on these
series in levels risks spurious results.
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Figure 3.13: GDP series in annual percentage changes. This plot shows the
annual percentage change in aviation’s contribution to GDP. The upper panel shows
the UK’s contribution, and the lower panel shows the US. We perform an ADF test
for stationarity on the annual percentage change in both series. In both cases, we
find p-values of less than 0.01. This provides strong evidence of stationarity after
transformation to annual percentage changes. This enables valid inference on these
series.

3.3 Results

3.3.1 Estimating airline flight volume

For each airline, we aim to generate rapid estimates of flight volume across time.

Some airlines are much larger than others. To ensure comparability between airlines,

39



we therefore normalise the flight volume data by indexing the first period to each

airline for 100. We then re-scale subsequent periods so they are measured relative to

the first. An airline whose original flight counts were (5000, 6000, . . . 6500) would

be normalised to (100, 120, . . . 130). A normalised flight volume of 120 reflects a

flight volume 20% higher than the first period.

A reasonable baseline model would be an autoregressive (AR) model where

we estimate normalised airline flight volumes with their own history:

yi,t = αi + γt + βyi,t−3 + εi,t, (3.1)

where yi,t is the number of flights and εi,t is a noise term for airline i in month t.

Due to the three month publication lag for the official flight volume statistics, when

nowcasting the flight volume for month t we only have official data from month t−3.

The baseline therefore includes an AR(3) term, yi,t−3 and β is the weight on the

AR(3) term.

We also derive binary (“dummy”) variables from the longitudinal data struc-

ture. γt are coefficients for dummy variables for each month (12 in total), which

proxy for seasonality. A positive value for γt would reflect that flight volumes are

usually higher than average in month t. αi are coefficients for 28 airline-specific

dummy variables, which capture the airline’s average growth over time. A positive

value of αi would reflect an increase in the mean flight volume for airline i across

the time period.

To measure the performance boost from ADS-B data, we add this data to

the baseline model. Denoting xi,t as the ADS-B flight count for airline i in period

t, and δ as the weight on the ADS-B term:

yi,t = αi + γt + δxi,t + βyi,t−3 + εi,t (3.2)

Table 3.1 shows that adding ADS-B data boosts the in-sample accuracy of all base-

line models, regardless of whether month and airline dummies are included. This

shows that ADS-B data can help estimate dynamic airline-specific changes in flight

volume, and does not only proxy seasonality or differences in airline growth.

Table 3.2 provides a fuller breakdown of model performance by dummies

included. We note that airline and month dummies both individually boost model

performance substantially. However, adding ADS-B data still substantially boosts

model performance in all specifications.

Our results so far suggest that ADS-B improves in-sample estimates of airline

flight volume. However, in-sample scores may overstate true predictive accuracy. We
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Table 3.1: Estimating airline flight volume: in-sample results. In-sample
adjusted R2 scores from models built to generate rapid estimates of airline flight
volume. All models are unpenalised linear regression. The baseline model is au-
toregressive: it estimates the change in each airline’s monthly flights using the most
recently available flight count statistics. The ADS-B model additionally includes
the ADS-B estimate of each airline’s monthly flights as a predictor. The simple
model does not include any further predictors. The complex model includes binary
variables for each airline and month, to capture seasonality and differences in airline
growth across the period. ADS-B data boosts performance across all model specifi-
cations, including against the more complex baseline. This shows that ADS-B data
can help estimate dynamic airline-specific changes in flight volume, and does not
only proxy seasonality or differences in airline growth.

UK US

Model Simple Complex Simple Complex
Baseline adj R2 0.06 0.66 0.36 0.75
ADS-B adj R2 0.54 0.90 0.56 0.89

Number of parameters 2 27 2 29
Number of airlines 13 13 15 15

cannot use a random train-test split to assess out-of-sample performance because

time series data is not independently and identically distributed (i.i.d). A random

train-test split would put data in the training set that occurs after the data in

the testing set. We would therefore use data from the future to fit a model that

estimates the past, which would not be a valid measure of out-of-sample accuracy.

Instead, we use adaptive nowcasting [Preis and Moat, 2014] to measure out-

of-sample accuracy. For each period t in our dataset, we use periods ∈ [1, t − 1]

as our training set. The trained model then estimates the flight volumes for each

airline in period t. We record the mean absolute error (MAE) across airlines, and

that is the test score for period t. Each time we increase t, we re-fit the model to

add new training data (which is why we call it “adaptive”). This procedure only

uses past data to predict the present, so we know performance is out-of-sample.

The models with firm and time dummies have many parameters. This could

lead to overfitting, which would reduce out-of-sample performance. We therefore

regularise our adaptive nowcast models using LASSO regression. Let β be the

vector of parameters in a linear forecasting model for T time periods and N airlines:

βLASSO = min{
N∑
i=1

T∑
t=1

(yi,t − βXi,t)
2 + λ‖β‖} (3.3)

where yi,t is the flight count for airline i in period t, Xi,t is their feature
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Table 3.2: Estimating airline performance: in-sample results with differ-
ent dummy choices. In-sample adjusted R2 scores from predicting each airline’s
monthly flights. All models are unpenalised linear regression. The baseline model
makes predictions without ADS-B data and the ADS-B score is after adding ADS-B
data. Model 1 uses only airline’s flights from the previous period as a predictor.
Model 2 adds 12 month dummy variables to proxy for seasonality, model 3 adds
airline dummy variables, and model 4 uses both.

UK US

Model 1 2 3 4 1 2 3 4
Baseline R2 0.06 0.37 0.39 0.66 0.36 0.53 0.61 0.75
ADS-B R2 0.54 0.82 0.73 0.90 0.56 0.78 0.71 0.89
Dummies None Airlines Months All None Airlines Months All

N parameters 2 15 14 27 2 17 14 29

vector. LASSO applies a linear penalty λ to the magnitude of each coefficient,

which punishes more complex models. It also allows automatic variable selection

as the linear penalty results in many zero parameters. The weight to penalise

complexity is determined by λ. We tune using 5-fold cross-validation across all data

from period 1 to t−1 to find the optimal values of λ and β. Next we record the tuned

model’s predictions for period t, and measure the error for each of the N airlines.

The performance score in period t is the mean absolute error (MAE) across the N

airlines.

For both the UK and US, we construct a baseline adaptive nowcasting model

which produces estimates for each airline. The baseline adaptive nowcasting model

contains airline dummies. We made this choice because fitting month dummies with

a short time dimension is difficult). Suppose we are nowcasting for December 2016.

Our training data would include July to November 2016. As we had no observations

for December, we would not be able to include the month dummies in the predictive

model.

Now suppose we are instead nowcasting December 2017. We would have a

month of prior airline observations of December to fit the month dummies with, so

we would be able to include them. However, they would be very sensitive to any one-

off events in December 2016 such as a global network disruption. Furthermore, the

model would not be strictly comparable to December 2016 because it would include

extra features. This would make comparing results across time more difficult.

The ADS-B model adds ADS-B data to the baseline adaptive nowcasting

model. Figure 3.14 depicts our adaptive nowcasting results. Adding ADS-B data

reduces the MAE by 29% for the UK (baseline MAE = 17.3, ADS-B MAE = 12.2)
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and 18% for the US (baseline MAE = 7.4, ADS-B MAE = 6.1).
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Figure 3.14: Adaptive nowcasting of airline flight volume. We build adap-
tive nowcasting models [Preis and Moat, 2014] to generate rapid estimates of flight
volume for UK and US airlines. We investigate whether models enhanced with real-
time ADS-B data deliver more accurate estimates than nowcasting models based
on historic flight volume alone. For each month t ∈ [5, T ], we fit a model with all
data up to t− 1, then test performance in month t. The model is an autoregressive
linear regression penalised using LASSO and tuned through 5-fold cross-validation.
(A) Performance for the UK. (B) Performance for the US. The red series show the
mean absolute error (MAE) from the baseline model with no ADS-B data, whereas
the blue series show the MAE when adding ADS-B data. We find that including
ADS-B data as a predictor improves rapid estimates of airline flight volume in both
the UK and the US.

These results hold across a range of dummy specifications. Table 3.3 shows

results from the other possible choices of dummies. Column 1 is the simplest model,

with no dummies included. Column 2 adds month dummies, but not airline dum-

mies. Colum 3 adds airline dummies, but not month dummies. Column 4 adds both

airline and month dummies. Adding ADS-B data reduces MAE in all specifications.

The reductions range from 20% to 26% for the UK, and 11% to 21% for the USA,

which is consistent with our primary results using airline dummies only.

The means reported in this section are means across airlines. We also show
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Table 3.3: Adaptive nowcast results with varying dummies included. Adap-
tive nowcasting results, as measured by MAE, with different dummy variable con-
figurations. The model is LASSO. For each country, column 1 is the simplest model,
with only the basic autoregressive predictor. Column 2 adds dummy variables for
the airlines, which proxy for airline flight volume growth during the analysis period.
Column 3 adds 12 month dummy variables to the model, which proxy for season-
ality. Column 4 adds both month and airline dummy variables, which is the most
complex specification.

UK US

Baseline MAE 18.8 17.3 17.7 15.2 8.2 7.4 7.3 6.7
ADS-B MAE 14.0 12.2 13.9 12.3 6.9 6.1 6.5 5.3

Dummies None Airlines Months All None Airlines Months All

the distribution of errors, across airline, for each model over time in Figure 3.15.

Our results are not noticeably being driven by outliers.
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Figure 3.15: Distribution of nowcast errors over time. This plots show the
distribution of errors, for each airline, over time. The scores we report in the main
text are mean absolute errors (MAE), where we take the mean across airlines. ADS-
B data reduces the mean of the distribution. Moreover, the lower means are not
noticeably being driven by outliers.

We chose an expanding training window, rather than a fixed window. A

fixed training window of w months means we lose the first w + 1 months from

the sample. Given the short time dimension, our primary setup uses an expanding

window instead. Each test period t, we train with all data up to t−1. This minimises

data loss, but means later periods are trained on more data than earlier periods.
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Table 3.4 reports results from a range of fixed training windows from 6 to 18

months. Adding ADS-B data substantially reduces nowcast MAEs in all cases and

none of them qualitatively differ from the expanding window results. Therefore, our

results are highly robust to varying the length of training window.

Table 3.4: Adaptive nowcasting results with varying training windows.
This table shows adaptive nowcasting results with different training windows. The
model is LASSO, with dummy variables for each airline. A fixed training window
of w months means we lose the first w+ 1 months from the sample. Given the short
time dimension, our primary setup uses an expanding window instead. Each test
period t, we train with all data up to t − 1. This minimises data loss, but means
later periods are trained on more data than earlier periods. Increasing the training
window reduces the size of the test set as the first test period becomes later. Here we
report results from a range of fixed training windows from 6 to 18 months. None of
them qualitatively differ from the expanding window results in the main text. With
a 6 month window, the first period is May 2017, a 12 month window is November
2017 and an 18 month window is May 2018.

UK US

Baseline MAE 21.4 14.7 17.0 7.6 7.3 8.2
Augmented MAE 14.8 11.6 12.0 6.6 5.7 6.2

Window Length 6 12 18 6 12 18

3.3.2 Estimating economic activity

We next analyse whether ADS-B data may help estimate aviation’s direct contribu-

tion to GDP. Both the UK and US aviation GDP series are non-stationary based on

Augmented Dickey-Fuller tests (UK: Dickey-Fuller = -1.4; US: Dickey-Fuller = -

2.9; both ps > 0.05). Therefore their distributions are not constant over time, so

we cannot use them for regression. Instead, we use the rolling annual percentage

change in GDP, which deals effectively with both non-stationarity and seasonality

(see Figure 3.13 for analysis of stationarity and Figure 3.11 for analysis of seasonal-

ity).

Our baseline specification for the annual percentage change in aviation’s

direct contribution to GDP ∆zt is

∆zt = α+ β∆zt−j + εt, (3.4)

where εt is a noise term. There is a two month publication lag for the first complete

estimate of UK GDP, and a one quarter lag for the US. Therefore ∆zt−j is the most

recent value known at month t, where j = 2 for the UK and j = 1 for the US. The
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augmented model includes the rolling annual percentage change in ADS-B flight

volume ∆xt:

∆zt = α+ β∆zt−j + γ∆xt + εt (3.5)

The in-sample results are promising: adding ADS-B data boosts adjusted R2 from

31% to 55% for the UK and 12% to 42% for the US. Table 3.5 shows further details

of these results. There is a large boost in R2 for both the UK and US. However,

there are only 18 monthly periods for the UK and 6 quarterly periods for the US

due to the limited time series of ADS-B data. These sample sizes are clearly too

small to assess out-of-sample performance with an adaptive nowcasting model. We

cannot construct longer time series as ADS-B data has only been available since

July 2016.

Table 3.5: In-sample results for nowcasting GDP. This table shows full in-
sample results for nowcasting GDP. All models are unpenalised linear regression.
Baseline is estimation without ADS-B data and ADS-B score is after adding ADS-B
data. There is a large boost in R2 for both the UK and US. However the sample sizes
are possibly too small for valid inference. There are only 18 monthly observations
for the UK, and 6 quarterly observations for the USA. We cannot construct longer
time series as ADS-B data has only been available since July 2016.

Country UK USA

Baseline R2 0.31 0.12
ADS-B R2 0.55 0.42
Sample size 18 6
Frequency Monthly Quarterly

We previously showed that ADS-B data could help estimate official flight

volumes. To obtain greater insight into whether ADS-B data can improve nowcasts

of aviation’s direct contribution to GDP, we therefore substitute the official airline

flight volume series in place of the ADS-B data. The official airline series are avail-

able for the full period for which we have aviation GDP data for both the UK (from

1997) and the US (from 2005). We again use adaptive nowcasting, but with fixed

training window lengths of 60 months for the UK and 8 quarters for the US.
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Figure 3.16: Adaptive nowcasting of aviation’s direct contribution to GDP.
We build adaptive nowcasting models [Preis and Moat, 2014] to generate rapid es-
timates of aviation’s direct contribution to GDP in the UK and the US. We in-
vestigate whether models enhanced with real-time flight volume data would deliver
more accurate estimates than nowcasting models based on historic GDP data alone.
Given a training window w, for each period t ∈ [w, T ] we fit a model with all data
∈ [t − w, t − 1], then test performance in period t. (A) Adding flight volume data
reduces the UK nowcast MAE by 7%. (B) Aviation’s direct contribution to UK
GDP. Visual inspection suggests that flight volume data delivers the greatest im-
provements in estimates during volatile economic periods, such as the period from
2008 to 2012. (C ) Similarly, adding flight volume results in the MAE decreasing
by 30% in the US. (D) Aviation’s direct contribution to GDP in the US. Again, we
see that the US model is most improved by flight volume data during the volatile
economic period until 2012.
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Figure 3.16 depicts out-of-sample results for GDP estimation. Adding real-

time flight volume data reduces the MAE by 7% for the UK (baseline MAE = 4.54,

ADS-B MAE = 4.22) and 30% for the US (baseline MAE = 4.65, ADS-B MAE = 3.25).

The improvement is greatest during the 2008-2010 financial crisis and the

2012 Euro crisis. Table 3.6 shows the performance split by time period. The baseline

model is relatively strong outside the crisis period, as the autoregressive component

is likely a stronger predictor. However during the crisis, when GDP is more volatile,

the baseline model is much weaker. The augmented model, that adds real-time flight

data, becomes relatively stronger. It reduces MAE by 20% for the UK and 46% for

the US. This may be because the baseline AR model performs worse during volatile

economic times.

Table 3.6: GDP results: split by crisis against non-crisis. This table shows
the performance split by time period. We report that the augmented GDP model
performs better relative to the baseline during volatile economic times. The baseline
model is relatively strong outside the crisis period, as the autoregressive component
is likely a stronger predictor. However during the crisis, when GDP is more volatile,
the baseline model is much weaker. The augmented model, which includes real-time
flight data as a predictor, becomes relatively stronger. It reduces MAE by 20% for
the UK and 46% for the US.

UK US

Time Period Crisis Non-crisis Crisis Non-crisis
Baseline MAE 8.0 3.2 8.1 2.3

Augmented MAE 6.4 3.3 4.4 2.4
Sample size 48 131 17 25
Frequency Monthly Monthly Quarterly Quarterly

For our main results, we chose a fixed training window of 60 months for the

UK, and 8 quarters for the US. Longer training windows allow for more data to fit

the model. However, we lose testing data as there is insufficient data to nowcast

earlier time periods. Table 3.7 presents results from varying the training window.

In each case, including data on real-time flight volume reduces nowcast MAEs. Our

results are qualitatively unchanged by both shorter and longer training windows,

across both the UK and US.

3.4 Discussion

We have assessed whether ADS-B data can help nowcast aviation statistics, which

are currently published with a three month delay. We first show that ADS-B data
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Table 3.7: GDP nowcasting results with a varying training window. The
main text shows results from training windows of 60 months for the UK and 8
quarters for the US. This table presents results from varying the training window.
For both countries, the second column is the training window length reported in the
main text. In the first and third columns for each country, we show how the results
change if the training window is increased or decreased by 6 months (2 quarters).
Our results are qualitatively unchanged by both shorter and longer training windows,
across both the UK and US. Therefore, our results are robust to varying the training
window.

UK (monthly) US (quarterly)

Window 54 60 66 6 8 10
Baseline MAE 4.63 4.54 4.52 4.90 4.65 4.03

Augmented MAE 4.41 4.22 4.13 4.42 3.25 3.10
Sample size 197 191 185 44 42 40

can accurately estimate airline performance, as measured by their flight volume.

Second, we show that real-time knowledge of flight volume is a leading indicator for

aviation’s direct contribution to GDP. We find that this indicator is of greatest value

during volatile periods, such as the crises between 2008 and 2012. Crisis periods are

when rapid estimates for GDP are most crucial for policymakers, as they must take

decisions quickly. In certain crises, such as disease outbreaks, real-time information

on flight volumes may also be important beyond the economic domain.

The main limitation of our analysis comes from the novelty of ADS-B data.

We do not have a long enough time series to determine whether ADS-B data, which

we only had access to from July 2016 onward, can directly nowcast GDP out-of-

sample. Future work will have access to a longer ADS-B time series and could

therefore better evaluate out-of-sample performance. Chapter 4 benefits from a

slightly longer time series, as we extend the ADS-B data out to April 2020 to cover

the beginning of the Covid-19 crisis. Continued monitoring of ADS-B data will

also be important in case its value as an economic indicator changes. For example,

airlines who knew ADS-B data were being used to assess their performance may

instruct pilots to fly differently. This however seems unlikely given the probable

costs of flying more erratically. ADS-B data is therefore likely to be less prone to

manipulation than other nowcasting data, such as internet search activity.

Finally, our analysis is restricted to aviation which comprises only 3-5% of

GDP in total, including indirect contributions which are not analysed here. However,

our methods could be extended to other sectors of the economy where data is shared

at a similar level of granularity. For example: Chapter 4 analyses whether these
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methods can be extended to estimating airport flight volumes, which are also an

important part of aviation’s infrastructure. Chapter 5 applies similar longitudinal

methods to analyse whether we can nowcast illicit drug demand with real-time

internet data. As the availability of real-time data increases, we could develop more

accurate estimates of a large enough number of economic sectors to build a complete,

real-time picture of the economy. In turn, policymakers would be able to respond

more effectively to future crises.
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Chapter 4

Nowcasting airport traffic with

aircraft location data

4.1 Introduction

In Chapter 3, we analyse whether ADS-B data could be used to nowcast airline

performance and aviation’s contribution to GDP. This chapter extends the analysis

to airports, as air traffic volumes are also crucial to airport financial performance.

When publishing annual reports, airport’s headline numbers are often their annual

growth in passengers and flight volumes. Statistics on airport flight volumes are

currently available in the UK, but are published with a 3 month lag. However, as

discussed in Chapter 3, there has been a publicly accessible ADS-B database with

global coverage since 2016. In this chapter, we exploit the geographic granularity of

ADS-B data to show that it can help estimate airport traffic in real-time. We build

on the analysis in Chapter 3 by using the latitude and longitude profiles of flights,

as well as their altitude, to match them to airports. In turn, this could be a leading

indicator for airport financial performance.

We also significantly extend the time series of the data relative to Chapter 3.

We consider a longer time period, extending the end of our sample from December

2018 to April 2020. This covers the beginning of the Covid-19 crisis, which caused

unprecedented volatility for the aviation sector. The longer time series allows us to

build a real-time dataset containing some 117 million flights between July 2016 and

April 2020, relative to the 67 million flights analysed in Chapter 3. Our dataset

contains information on the precise location of both the takeoff and landing of each

flight.

The geographic granularity of our dataset could be exploited in future re-

51



search on estimating trade volumes. Many countries publish granular trade data

that is split by both airport of arrival and trading partner. Our real-time flight

dataset may serve as a useful nowcasting indicator for changes in trade volumes.

In this chapter, we are conscious of the methodological issues with some of

the nowcasting literature. Similarly to Chapter 3, we compare our ADS-B model

to several plausible choices of baseline model in this chapter. We also allow the

predictive model to change over time in a process called “adaptive nowcasting”

[Preis and Moat, 2014], which is consistent with the methodology from Chapter 3.

Taken together, these choices allow for a rigorous assessment of the out-of-sample

predictive power of ADS-B data.

4.2 Data

4.2.1 Airport statistics

The UK requires airports to disclose their volume of flights each month. These

disclosures are submitted to the Civil Aviation Authority [Authority], who publish

monthly tables containing all UK airports. The publications have a 3 month lag: to

receive January 2019 data, one must wait until April 2019.

The US does not require airports to make such disclosures. However, they

require airlines to make detailed disclosures of their flight volumes to the Federal

Aviation Authority [FAA, 2020]. Similarly to the UK, the FAA publish monthly

tables with a 3 month lag. These must be split by origin and destination airport,

so it is possible to construct airport flight statistics from the airline disclosures.

Finally, we manually assemble a dataset of major global airport locations.

This is necessary for matching the ADS-B takeoffs and landings to an airport. ADS-

B broadcasts do not contain reliable information on origin and destination airport,

so we have to match manually. We describe this process in the next section.

ADS-B data

As in Chapter 3, we collect ADS-B data from the ADS-B Exchange. We provide a

reminder of the structure of this data below.

In order to aid air traffic control, aircraft in the EU and USA must broadcast

their position in real time under the ADS-B protocol. This has been mandatory for

US commercial aircraft since 2020, and EU aircraft since 2017. Furthermore, other

aircraft must be able to receive these broadcasts, so they are unencrypted. Thou-

sands of aviation enthusiasts have also set up receivers to pick up the broadcasts.
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They feed into a centralised database called the ADS-B Exchange, which has global

coverage since July 2016.

The key fields from these broadcasts are the aircraft’s location (altitude, lat-

itude, longitude) and the timestamp. We extract these fields, along with a unique

identifier for the aircraft and their operating airline, from around 20 billion broad-

casts since July 2016. This information is sufficient to reduce the dataset from a

row for each broadcast to a row for each journey. The journey contains both the

aircraft’s inferred takeoff and landing times, and takeoff and landing location. While

there is a field in the ADS-B data indicating origin and destination airport, it is

missing for many flights and the ADS-B Exchange warns that it is heavily prone to

error.

The upper panel of Figure 4.1 depicts the reduction process for a given

aircraft over a day of data. We record a takeoff if the aircraft clears 1,000 feet

while ascending. Similarly, we record a landing if the aircraft crosses 10,000 feet

while descending. When either a takeoff or landing occurs, we record the precise

location of the aircraft. For this aircraft, we are able to reduce thousands of location

broadcasts to just three flights. Chapter 3 describes this algorithm in more detail,

along with relevant modelling choices. We run this algorithm over all the ADS-

B data from July 2016 to April 2020, recording some 117 million flights globally.

This extends the dataset from Chapter 3, where the end date for the analysis was

December 2018 and we record some 67 million flights.

We further build on Chapter 3 by projecting this aircraft’s flights into latitude

and longitude space in the lower panel of Figure 4.1. The takeoff locations tend to be

closer to the actual airport than the landing locations. This is because the landing

altitude threshold is much higher, which is necessary due to missing data. Lower

altitude thresholds therefore caused us to miss landings. We conclude that this is

not worth a slight improvement in location accuracy.
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Flight 1 Flight 2
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Landing Threshold

Takeoff Threshold

Figure 4.1: Path of aircraft 40083B on 1 September 2018. This figure shows
how the flight counting algorithm tracks a given aircraft. Panel (a) shows the aircraft
in altitude space, and panel (b) in latitude and longitude space. As in Chapter 3, the
takeoff threshold is set to 1,000 feet, and the landing threshold is 10,000 feet. Unlike
in Chapter 3, the recording of takeoff and landing location is critical for matching
the flight to an airport. We record three takeoffs at 09.30, 13.00 and 17.00, and three
landings at 10.30, 13.30 and 18.00. The first flight is from Heathrow to Amsterdam
and the second flight is the return. The third flight takes off again at Heathrow,
and lands in Edinburgh. The slight imprecision in landing locations is due to the
higher landing threshold, shown in panel (a).
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Figure 4.2: Recorded flights during September 2018. This figure shows flight
paths originating in the UK during September 2018 that were picked up from ADS-
B data. The upper panel is a global view, with some major hub airports such as
New York and Dubai plotted as solid yellow circles. Different arc colours mark
the major UK origin airports. We analyse the 18 largest airports, as measured by
annual volume of flights in the UK airport statistics. Heathrow clearly dominates
long haul traffic, but it is difficult to assess short haul due to the density of traffic
around the UK. We therefore provide a closer view of the UK in the lower panel.
The 18 UK airports are plotted as circles with colour matching their flight arc.
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We next match each flight’s takeoff and landing location to an airport. This

is the airport with the shortest Euclidean distance, as measured by latitude and

longitude. Figure 4.2 is a spatial snapshot of this process for flights originating in

the UK during September 2018. The upper panel shows that long haul flight traffic

is dominated by Heathrow, which is the UK’s major hub, Gatwick and Manchester.

Few other airports fly beyond Europe.

Because of the concentration in traffic, we provide a local view of UK flights

in the lower panel of Figure 4.2. The ADS-B flight volumes do not always match the

UK airport statistics well on aggregate. For example, smaller London airports seem

to be overrepresented relative to some larger regional airports such as Manchester

and Birmingham. This is likely because some airports are better covered by ADS-B

receivers than others. Furthermore, some of the regional airports predominantly

make intra-UK flights.

We restrict the matching process to only include airports with at least 1% of

total traffic for their country. This leaves 18 UK airports and 21 US airports. This

restriction is necessary because the takeoff and landing locations are recorded with

some error. There are many very small airports and we may mistakenly attribute

takeoffs to them that actually occurred at nearby major airports.

Variable coverage is a much bigger issue for the ADS-B data in the USA than

the UK. Figure 4.3 depicts aggregate coverage for both regions. ADS-B coverage is

much higher in the UK, and the aggregate series tracks the airport statistics more

closely. The lack of coverage in the USA is problematic for comparing across airports.

ADS-B data records fewer takeoffs at the largest airport in the USA (Atlanta) than

the 6th largest (New York JFK), which has only half as many flights according to

US airport statistics. Therefore we separate inference in Section 4.3 between the

UK and US.

We have 18 UK airports and monthly data from July 2016 to April 2020.

Given the 3 month delay in airport statistics, we drop the first 3 months of the

sample. Four smaller airports had very poor ADS-B coverage so we also remove

them from the sample. This leaves us with 14 UK airports and 43 time periods,

for a UK sample size of 602 airport-months. In the US, after applying a similar

procedure, we have 21 airports remaining. Given the same 43 time periods, we have

a US sample size of 903 airport-months.
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Figure 4.3: Aggregate flight volumes for UK and USA. This figure compares
the aggregate flight volumes measured by ADS-B data and the airport statistics.
The upper panel depicts the UK and the lower panel depicts the USA. In both
cases, the blue series shows the airport statistics and the red series is the ADS-
B estimate. The UK clearly has better coverage. Across the sample, the ADS-B
estimate varies from 75% – 95% of the airport statistics and matches the seasonality
closely. In contrast, US coverage varies from 40% – 60%. While it increases across
the sample, it does not seem to match the aggregate seasonality well. Our sample
runs from July 2016 to April 2020, which is longer than the sample in Chapter 3
that ended in December 2018. This allows us to cover the beginning of the Covid-19
crisis in April 2020, where we observe a sharp decline in volumes for both countries.
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4.3 Results

4.3.1 Nowcasting airport flight volumes

In-sample results

Consistent with the methodology from Chapter 3, we first construct a full baseline

model. The full baseline model is our best estimate of airport statistics, without

using any ADS-B data:

yi,t = αi + γt + βyi,t−3 + εi,t (4.1)

where yi,t denotes the volume of air traffic departing from airport i in month

t. Due to differences in size across airports, we normalise yi,t by indexing the first

period (July 2016) to 100 for all airports. The model is autoregressive (AR) - it

includes the third lag of the airport statistics yi,t−3 as this is known when estimating

period t.

We engineer two sets of dummy variables using the longitudinal structure

of the data. αi are airport dummies, which estimate the average volume of flights

departing from airport i across all time periods. γt are month dummies, which proxy

for seasonal effects. As shown in Section 3.2.1 of Chapter 3, there is clear seasonality

in the data with more flights in spring and summer.

The full model adds the ADS-B measure of airport traffic to the baseline

model:

yi,t = αi + γt + β1xi,t + β2yi,t−3 + εi,t (4.2)

where xi,t denotes the ADS-B measure for airport i in period t. We first

assess the value of ADS-B data by comparing accuracy between the baseline model

and full model.

Table 4.1 presents a comparison between the baseline model and the full

model, as measured by R2. These are adjusted R2 scores that penalise more complex

models with more variables. Adding new variables can therefore reduce the R2 score

if the model does not become more accurate. The simplest model is the first column,

which is an AR model with none of the firm or month dummies. The second column

adds firm dummies and the third column adds month dummies. The final column

is the most complex model, given by Equation 4.2, which includes both sets of

dummies.

The ADS-B data raises the adjusted R2 score of every specification. For the

UK, the improvements are generally larger. The size of this boost varies considerably
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Table 4.1: Estimating flight volumes, in-sample results. In-sample adjusted
R2 scores from predicting the number of monthly flights of each airport. All models
are unpenalised linear regression. Baseline score is the prediction without ADS-B
data and ADS-B score is from the same model after adding ADS-B data. Model
1 uses only flights from the previous period as a predictor. Model 2 adds month
dummies to proxy for seasonality, model 3 adds firm dummies, and model 4 uses both
sets of dummmies. Adding ADS-B data improves performance across all models,
although the boost is much smaller when we include month dummies.

Model Simple Firm dummies Time dummies All dummies

UK
Baseline R2 0.06 0.53 0.08 0.55
ADS-B R2 0.46 0.66 0.62 0.73
Number of features 2 45 16 59

USA
Baseline R2 0.01 0.24 0.17 0.41
ADS-B R2 0.06 0.28 0.25 0.47
Number of features 2 45 23 66

across models. In the simplest setup, with no dummies, adding ADS-B data boosts

R2 from 6% to 46%. In the most complex setup, with both firm and month dummies,

ADS-B data boosts R2 from 55% to 73%. This provides evidence that ADS-B data

is predictive even after controlling for firm-specific and seasonal variation.

The improvement is smaller for US airports. However, the improvement is

fairly consistent across models. In the simplest setup, with no dummies, adding

ADS-B data boosts R2 from 1% to 6%. In the most complex setup, with both

firm and month dummies, ADS-B data boosts R2 from 41% to 47%. The smaller

improvement may be due to poorer ADS-B coverage, as documented in Section

3.2.1.

A major caveat is that these are in-sample results. If the models overfits,

the R2 scores may overstate out-of-sample performance. This is a bigger issue for

the more complex models with large numbers of dummies. We may be particularly

concerned about the models with month dummies, given the short time series. A

forecasting model would not be able to estimate these, because they are using data

from the future to fit parameters estimating the present. Furthermore, longitudinal

data is not usually independent and identically distributed (i.i.d) so we cannot

assess out-of-sample performance with a random train-test-split. Instead, we use

an adaptive nowcasting [Preis and Moat, 2014] to analyse whether ADS-B improves
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out-of-sample performance.

Out-of-sample results

Consistent with Chapter 3, we use adaptive nowcasting to assess out-of-sample per-

formance. We provide a reminder of this procedure below.

Adaptive nowcasting uses only data from the past to estimate the present.

We first set a training window, w, which determines the length of past data in the

training set. For each period t in our dataset, we use periods ∈ [t−(w+1), t−1] as our

training data. We then test the models by finding their mean absolute error (MAE)

across airports in period t. This measures out of sample performance, because the

testing set always occurs chronologically after the training set.

We re-train the model each time we increase t, because the training window

moves and the training data changes. This adaptation is important as the relation-

ship between our variables may change over time. For example, if ADS-B receiver

coverage improves over time then it would become a stronger predictor. Optimally,

the parameters would change to reflect that.

The length of the training window is a hyperparameter that we can tune.

We choose a training window of 12 months. This does not yield the lowest error,

but there is a trade-off between increasing the length of the training window and

the size of the testing set. Results using training windows from 3 - 21 months are

not qualitatively different.

Figure 4.4 presents adaptive nowcasting results. The baseline model is from

the third column of Table 4.1, which includes firm dummies. However we do not

include month dummies, because we can’t fit them given the limited number of time

periods in the training set. We need to be wary of overfitting, because there are

a large number of firm dummies. Therefore we regularise our model using LASSO

regression, and we tune using 5-fold cross validation on the training set. Chapter 3

provides a fuller description of this procedure.

Panel A of Figure 4.4 shows nowcast MAE for UK airports. ADS-B data

reduces nowcast MAE, relative to the baseline model, in all periods. Across the

whole sample, MAE falls by 45%. This is a bigger improvement than some of the

in-sample models, suggesting that the baseline model overfit from the number of

dummies. In turn, this may have limited the potential boost from adding ADS-B

data. MAE also seems to be smaller in the second half of the sample, which may

reflect improving ADS-B coverage.

Panel B of Figure 4.4 shows nowcast MAE for US airports. Adding the ADS-

B data reduces nowcast MAE by 2.5% across the sample, which is much smaller than
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Figure 4.4: Adaptive nowcasting results for UK and US airport flight vol-
umes. We use the adaptive nowcasting procedure with a 12 month training window.
For each month t from in November 2016 to April 2020, the testing set is period t
and the training set is months ∈ [(t− 13, t− 1]. Panel A shows nowcast mean abso-
lute error (MAE) for UK airports. The red series show the MAE from the baseline
model with no ADS-B data and the blue series shows MAE after adding ADS-B
data. This reduces nowcast MAE in every time period, and by 45% across the sam-
ple on average. Panel B shows nowcast MAE for US airports. Adding the ADS-B
data reduces nowcast MAE by 2.5% across the sample, which is much smaller than
the improvement for UK airports. This is likely due to poorer US receiver coverage.
For both countries, the reduction is greatest in April 2020, which is when the Covid
crisis began.

the improvement for UK airports. This is likely due to poorer ADS-B coverage in

the US, as ADS-B only became mandatory in 2020 for the US compared to 2017 in

the UK.
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The upper panel of Figure 4.5 shows US nowcast results if we train a model

using only data from 2019 onwards. As shown in Figure 4.3, US coverage improves

towards the end of our sample. The reduction in nowcast MAE is 32% in this

subsample, which is much greater and comparable to the UK results. This provides

further evidence that receiver coverage heavily impacts ADS-B model performance.

We may expect continued improvement of the ADS-B model in future if receiver

coverage continues to improve.

In both countries, the ADS-B model improves results the most in April 2020,

when the Covid crisis sharply reduced air traffic. We depict an example of this in

the lower panel of Figure 4.5, which shows flight volumes for JFK airport. The

ADS-B model predictions are more variable than the baseline model, and generally

track closer to the ground truth. This difference is particularly stark in April 2020.

The baseline model completely misses the sharp contraction in true flight volumes,

but the ADS-B model detects it. The ADS-B model is therefore able to effectively

provide an early warning of declining traffic for JFK airport.
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Figure 4.5: Adaptive nowcasting results for US airport flight volumes after
2018. Panel A shows adaptive nowcast results for the US when only using data
after 2018. We use the adaptive nowcasting procedure: for each month t from May
2019 to April 2020, the testing set is month t and the training set is all months from
January 2019 to t − 1. Due to the short time series, we use an expanding training
window. Later months therefore have more training data. The red series show the
MAE from the baseline model with no ADS-B data and the blue series shows MAE
after adding ADS-B data. This reduces nowcast MAE by 32% on average across the
sample. The reduction is particularly large in April 2020, which is when the Covid
crisis sharply reduced air traffic. Panel B depicts an example of nowcast output for
JFK airport. The ADS-B model generally predicts closer to ground truth than the
baseline model. This difference is particularly stark in April 2020, when the baseline
model fails to depict the sharp fall in air traffic.
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4.4 Conclusion

In this chapter, we analyse whether real-time location data from ADS-B can improve

estimates of UK and US airport flight volumes. We set up a range of baseline models,

and find that ADS-B data boosts in-sample performance across all specifications.

The size of this boost varies from 4% to 54%, depending on how many features we

engineer from the longitudinal data structure. Adding seasonal effects in particular

seems to make the baseline model much stronger, therefore reducing the gain from

adding ADS-B data. These results build on similar findings in Chapter 3 which

show that ADS-B is a in-sample strong predictor of airline flight volumes.

We find the in-sample improvements also apply out-of-sample. Using an

adaptive nowcasting procedure, we find that ADS-B data reduces out-of-sample

MAE by 45% for the UK. The improvement is smaller for the US, at just 2.5%.

However, the performance boost grows over time. If we restrict the US data to

2018 onward, the improvement in MAE from including ADS-B data rises to 32%.

Therefore ADS-B data may provide greater gains in the future.

The improvement in airport out-of-sample performance is not as large as the

improvement from Chapter 3, which focused on airlines. This may be because the

airport analysis is more vulnerable to varying geographic coverage. For example,

suppose Manchester Airport was poorly covered with ADS-B receivers relative to

London Heathrow. This would have a very direct impact on the accuracy of relative

estimated flight volumes for these airports. However, the impact on relative airline

flight volumes would be more limited, because the ADS-B data has a variable for

matching flights directly to airlines.

Future research could further build on our results by finding applications for

real-time knowledge of airport traffic. Some airports stocks are publicly traded, so

ADS-B could be predictive over their stock prices. The data could also be useful in

producing faster economic statistics. For example, real-time airport statistics would

likely help to estimate the overall economic health of the aviation sector. We already

showed in Chapter 3 how real-time data on airline flight volumes could be a leading

indicator for aviation’s contribution to GDP in the UK and USA.

Statistics authorities in both the UK and USA also publish granular data on

international trade flows through each airport. These are further split by route e.g

trade arriving in London Heathrow specifically from China. Future research could

analyse whether changes in air traffic along each route, as measured by ADS-B,

are a real-time indicator for changes in trade. This would provide powerful further

evidence of the potential for real-time location data as a nowcasting indicator.
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Chapter 5

Nowcasting drug demand with

Wikipedia page views: evidence

from darknet markets

5.1 Introduction

Chapters 3 and 4 find that real-time aircraft location data has economic value in

nowcasting the aviation sector. We noted that extending these methods to other

sectors may help build up a complete, real-time picture of the economy. This chapter

analyses whether similar methods, applied to other real-time data from the internet,

can be used to nowcast illicit drug demand. Given its black market status, this is a

difficult sector to observe, so real-time information may be particularly valuable.

As well as being an economic issue, rapid changes in illicit drug use are

also a major public health concern. In the USA, 30,000 people died from Fentanyl

overdoses in 2018 alone [National Institute on Drug Abuse, 2019]. It has become

harder for authorities to monitor illicit drug markets. This is partly caused by shifts

in production and distribution channels [Demant et al., 2018]. Traditional global

supply chains for organic drugs, such as cocaine and heroin, are being replaced

by new supply routes for synthetic drugs, which can be produced anywhere [Dittus,

Wright, and Graham, 2018; Smith and Garlich, 2013; Perdue, Hawdon, and Thames,

2018; Tracy, Wood, and Baumeister, 2017]. As a result, monitoring supply chains

is now more challenging.

Changes in drug demand are also hard to monitor. Traditionally, authorities

have relied on annual surveys, such as the United Nations Office on Drugs and Crime

(UNODC) World Drug Report [United Nations Office on Drugs and Crime, 2019].
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The low frequency of these statistics means that authorities may miss opportunities

to intervene early in drug crises, such as the US Fentanyl epidemic [Higham et al.,

2019]. New drug categories may not appear in such surveys at all [Smith and

Garlich, 2013]. For example, there were at least 36 novel psychoactive substances

discovered between January and August 2019 alone [EMCDDA, 2019]. A more

frequent measure of drug use would enable public health authorities to intervene

earlier, thereby using their limited resources more effectively.

To address these concerns, we present a novel method to nowcast drug de-

mand based on high-frequency sales data from darknet markets. These are online

markets that rely on encryption and digital currencies to enable anonymous trade

of goods and services [Barratt and Aldridge, 2016]. We measure “nowcast” value

by the out-of-sample nowcast errors of our models. As in previous chapters, “now-

casting” means estimating the current value of statistics that are usually released

with a lag. As detailed in Chapter 2, this term was first coined for economic vari-

ables, such as GDP, inflation and migration [Giannone, Reichlin, and Small, 2008;

Carriere-Swallow and Labbe, 2013; Lin, Cranshaw, and Counts, 2019]. We consider

economic applications in Chapters 3 and 4, which nowcast the aviation sector using

real-time aircraft location data. More recently, nowcasting has also been applied

in epidemiology to estimate flu and dengue outbreaks [Ginsberg, Mohebbi, Patel,

Brammer, Smolinski, and Brilliant, 2009; Preis and Moat, 2014; Olson, Konty, Pala-

dini, Viboud, and Simonsen, 2013; Majumder, Santillana, Mekaru, McGinnis, Khan,

and Brownstein, 2016; Mizzi, Preis, Bastos, Gomes, Codeço, and Moat, 2021]. Al-

though we consider an epidemiology application in Chapter 6, accurate nowcasts

of drug demand would also be useful, given the long lag between current annual

surveys.

We find that nowcasting models based on historic sales alone cannot accu-

rately nowcast drug demand. It is also difficult to scrape the markets and there are

frequent outages [Molnar et al., 2010], so a measure based on darknet data alone

could be unreliable. However, consumers may search for information on drugs be-

fore making a purchase [Su, He, Liu, Zhang, and Ma, 2018; Wightman, Perrone,

and Nelson, 2017]. We therefore also collect data on Wikipedia page views for each

drug, because these are reliably available in real-time [Yoshida et al., 2015]. We find

that adding data on Wikipedia page views for these drugs dramatically improves

the models’ accuracy. Therefore, we can construct a more frequent measure of drug

demand using Wikipedia data. Our Wikipedia model remains effective at weekly

frequency, which is a substantial improvement relative to the current annual surveys.

In turn, this could reduce public response times to future drug epidemics.
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Nowcasting drug use with online behaviour is an emergent field with little di-

rectly comparable literature. One recent paper found a correlation between Google

searches for novel psychoactive substances and their annual change in sales, as mea-

sured by the United Nations Office on Drugs and Crime surveys [Perdue et al., 2018].

However, this study could not assess whether this relationship holds out-of-sample

due to the low time frequency of their sales data. Another study found a correlation

between the volume of online comments about opioids, on the large forum Reddit,

and the level of opioid abuse across US states [Balsamo et al., 2019]. This study was

also limited to in-sample analysis by the low time-frequency of their data, and were

geographically restricted to the USA. Our global drug demand data is available at

higher time frequency, which allows us to evaluate model performance out-of-sample.

Moreover, the darknet data is actual sales rather than drug user surveys, which are

particularly vulnerable to response bias [Zhao et al., 2009]. This chapter is therefore

the first evidence on predicting darknet drug sales, and also whether internet search

can predict drug use out-of-sample.

Another growing strand of literature is using Wikipedia page views to predict

economic variables. Previous papers have found relevance for traditional variables

such as the stock market [Moat et al., 2013] and box office sales [Mestyan et al., 2013].

Some papers have also found Wikipedia data can predict cryptocurrency prices

and Bitcoin trades [ElBahrawy et al., 2017; Kristoufek, 2013], which is particularly

relevant given our use of darknet data. Finally, our results are consistent with

prior findings that Wikipedia page views can predict other epidemics such as the

flu [Generous et al., 2014].

5.2 Data

5.2.1 Darknet sales

When buying drugs on the darknet, it is common (although not always mandatory)

to leave reviews. Each review has an associated vendor country, product and times-

tamp. Our data comes from scraping the reviews from the four largest markets

(Alphabay, Hansa, Traderoute and Valhalla) during June and July 2017. These

covered 80% of global trade at the time [Dittus et al., 2018].

Drug sales on the darknet have risen over time. This means the sales data

may be nonstationary, which is problematic for assessing time series model perfor-

mance [Cheung and Lai, 1995]. Figure 5.1 shows global darknet demand for MDMA.

Panel A shows that sales over time are growing rapidly, so they may not be sta-

tionary. Panel B shows the percentage change in sales over time. While there is
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volatility, the distribution looks more constant across time. We formally test for

stationarity in Section 5.3.1.
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Figure 5.1: Darknet MDMA sales over time. This figure shows weekly sales
of MDMA on the darknet over time. The unit is number of unique sales, so a
given transaction is only one sale regardless of the volume of the transaction. Panel
A shows that sales over time are growing rapidly, so sales may not be stationary.
Panel B shows the percentage change in sales over time. While there is significant
volatility, the distribution looks more constant across time. We formally test for
stationarity in Section 5.3.1.
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The sales data is transaction-level: for each review, we assume one sale. This

is a lower bound on true sales, because it is not always mandatory for buyers to leave

a review [Barratt and Aldridge, 2016]. The timestamps are continuous, so we could

conduct our analysis at different levels of time aggregation. The higher frequency

the aggregation, the faster the measure of drug demand would be.

However, higher frequencies make the sales data sparser with more zero ob-

servations. Figure 5.2 shows the distribution of percentage changes in drug sales, ag-

gregated at different frequencies. The daily frequency distribution is clearly sparser

than weekly, which in turn is sparser than monthly.

To manage this trade-off, we aggregate the sales data to monthly frequency,

which is still much more frequent than the annual official surveys. We assess the

robustness of our results to differing aggregation frequencies in Table 5.3.

A potential limitation with the scraped sales data is that it only captures

drug listings that were still available from June to July 2017. If a vendor were to

create a listing and remove it before June 2017, we would not observe any of the sales

in the scrape. We could reduce the impact on our analysis by limiting our data to

be as close to the scraping period as possible. For example, if we only consider sales

from May to July 2017 then there would be far fewer removed listings. However

this would also reduce our sample size. Instead, we use all available data for our

analysis and assess the impact of restricting the sample period in Table 5.4.

5.2.2 Wikipedia views

We collect Wikipedia page views data through the Wikipedia API, which runs from

July 2015 onward [Wikipedia API, 2019]. The raw data is available at daily fre-

quency, but we aggregate to monthly frequency to match the sales data. We further

split the data by language, and use that as a proxy for the country of the viewer.

This is likely a reasonable assumption for some languages, as shown in [Generous

et al., 2014]. For example, viewers of the Dutch language page are probably located

in the Netherlands. However there may be measurement error, particularly for the

English language page which we assume to cover several countries. We assess the

results for each country in Section 5.3.3.

Figure 5.3 describes the Wikipedia data over the sample period. Panel A

shows that total views are relatively stable over time. Panel B shows the distribution

of views across languages, of which the English pages are unsurprisingly by far the

most popular. Panel C shows the distribution of views across drugs, which is more

evenly spread.

We considered using Google Trends as an alternative web search indicator.
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Figure 5.2: Distribution of percentage changes in drug demand at differ-
ing aggregation frequencies. These plots present distributions of the percentage
changes in drug demand at daily, weekly and monthly frequencies. Higher time fre-
quencies are beneficial for policymakers, and for raising the sample size for analysis.
However, the higher time frequencies are problematic because the data is sparser.
At daily frequency, roughly 18% of the percentage changes in sales are zeroes, and
the distribution is not normal. We manage this trade-off by aggregating to monthly
frequency, where only 3% of the percentage changes in sales are zeroes. The distri-
bution is therefore much more normal.
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Figure 5.3: Wikipedia data summary. Panel A shows the total number of
Wikipedia pages views for all languages and drugs, aggregated to monthly frequency.
This seems stationary over time. Panel B shows total Wikipedia views over the entire
period of study for each language, at a log scale. English is clearly dominant, with
views being an order of magnitude greater than the next most common language
(Spanish). Panel C shows total Wikipedia views over the entire period of study for
each drug Wikipedia page. This is fairly evenly distributed across drugs, although
the most popular drugs (e.g. Cannabis) are not necessarily the most viewed.

However Google Trends may be problematic due to language ambiguity for drugs.

For example, a search for Magic Mushrooms could feasibly be expressed as “mush-

rooms”, “shrooms”, “magic shrooms”, or “truffles”. Wikipedia is much simpler as

there is a set page for each drug [Tsurel et al., 2017]. We conducted an additional

analysis where we augmented the Wikipedia data with Google Trends, but found

little change in our results. This is consistent with previous research finding sub-

stantial correlation between Wikipedia and Google searches [McMahon et al., 2017],

which suggests there may be limited value in using both.

71



5.3 Results

5.3.1 Pooled model

For valid time-series inference, we require the distribution of our data to be sta-

tionary across time [Cheung and Lai, 1995]. To formally test for stationarity, we

conduct Augmented Dickey Fuller (ADF) tests on the sales data for each drug.

We find monthly sales to be nonstationary, with ADF test statistics ranging from

-0.8 to -2.6 (all p-values > 0.09). In contrast, the ADF statistics after conversion

to monthly percentage changes range from -3.9 to -11.9 (all p-values < 0.01). We

therefore conduct our analysis on the monthly percentage change in sales over time.

Our data is longitudinal with 3 dimensions: drug, country and time. Let yi,j,t de-

note the percentage change in sales of drug i in country j and time period t. Our

baseline model is:

yi,j,t = β0yi,j,t−1 + αi + δj + γt (5.1)

where yi,j,t−1 is an autoregressive term, in case of serial correlation. We

also engineer binary variables (“dummies”) from the longitudinal data structure.

These features allow the baseline model’s estimates to capture more variation in

drug demand:

• αi are dummies for each drug.

• δj are dummies for each country.

• γt are dummies for each month, in case of seasonality.

In this specification (the “pooled” model), we model all drugs jointly. The

advantage is that we have more data to fit each of the pooled parameters, which

makes overfitting less likely. For example, if we have N drugs and J countries then

we have N ∗ J observations to fit each time dummy γt. Having fewer drug-specific

parameters may also allow us to nowcast drugs that are not in our sample.

However, the disadvantage is that we restrict the model relative to modelling

each drug separately. If we were to model each drug separately, this would allow for

separate country and time dummies for each drug. Equation 5.2 demonstrates this

approach, which we analyse later in Section 5.3.2.

yi,j,t = βi0yi,j,t−1 + δij + γit (5.2)
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To estimate the performance improvement from Wikipedia data, we add it

to the baseline model. Letting Xi,j,t be the percent change in Wikipedia views for

drug i in country j and time period t, the “Wikipedia model” is:

yi,j,t = β0yi,j,t−1 + β1Xi,j,t + αi + δj + γt (5.3)

Table 5.1 presents in-sample results comparing the pooled models. All models

are unpenalised regression. Scores are adjusted R2, which includes a penalty term

for models with more features. The baseline score is the model’s adjusted R2 without

including Wikipedia views. The Wikipedia model includes data on Wikipedia views.

The models in the first column use only the autoregressive terms and Wikipedia

views as predictors. The models in the second column add complexity with country,

drug and month dummies.

The Wikipedia model outperforms the baseline by between 49 and 64 per-

centage points (pp), depending on the model choice. Therefore Wikipedia data is a

strong in-sample indicator for drug demand. This effect is also much larger than the

boost from adding the dummies, which we estimate at 7-22pp. However, in-sample

performance may not reflect true nowcast potential because of possible overfitting.

Table 5.1: Pooled model - in-sample performance. This table compares in-
sample accuracy, as measured by Adjusted R2, with varying numbers of dummies.
The first column is a simple model with no dummies included. The second column is
a more complex model, including dummies for country, drug and month. Including
Wikipedia data boosts model performance by 64pp for the simple model, and 49pp
for the complex model. This performance boost is much larger than the boost from
adding dummies alone, which we estimate at 22pp. Therefore Wikipedia data is a
strong in-sample indicator for drug demand.

Simple model All dummies

Baseline Adj. R2 0.003 0.22
Wikipedia model Adj. R2 0.64 0.71

Sample Size 1918 1918
Number of features 2 35

We cannot evaluate out-of-sample performance with a random train test

split, as time series data is not independent and identically distributed (i.i.d). A

random split would put some data in the training set that occurs chronologically

after some of the testing set. We would therefore be using data from the future to

fit a model estimating the past. This is clearly not possible when performing an

actual nowcast.

As in Chapters 3 and 4, we instead use a one-step-ahead nowcasting proce-
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dure to measure out-of-sample performance. We first set a training window, w, that

determines the size of the training set. Then for each period t ∈ [w, T ] in the data,

the training set is data from periods ∈ [t − w − 1, t − 1]. To prevent overfitting,

we penalise the model’s coefficients using LASSO and 5-fold cross validation in the

training set. The penalised model then nowcasts the test set from period t, which is

completely held out from training. This procedure only nowcasts the present with

data from the past, so it is truly out-of-sample.

We record the errors in period t and use the mean absolute error (MAE)

to measure that period’s accuracy. Each time we increase t, we slide the training

window to update the data and re-fit the model. The model therefore “adapts”

over time to new data, which helps maintain accuracy if the underlying relationship

changes over time. We set a training window of 12 months, which allows the model

to see each month in the training set and fit the seasonality dummies. The first

period in our test set is therefore October 2016.

Figure 5.4 compares out-of-sample results from the pooled models. We in-

clude month, drug and country dummies in both models. As explained in Section

6.2.1, our analysis is in the monthly percentage changes space. For example, if the

true monthly change in demand for a given drug were 0.3 (30%) and our model

predicted 0.5 (50%), this would yield an error of 0.2 (20%).

Adding Wikipedia data to the model reduces nowcast MAE in almost every

time period. The average reduction in error across the sample is 43% relative to the

baseline MAE. Therefore, Wikipedia data is also a strong out-of-sample predictor

for drug demand.

The US Fentanyl epidemic demonstrates how a more frequent measure of

drug use could be highly valuable for providing early warnings to policymakers. The

federal government only declared a national emergency in January 2017, which was

arguably too late [Higham et al., 2019]. Figure 5.5 shows that the Wikipedia model’s

errors are 20% lower than the baseline for US Fentanyl demand. The Wikipedia

model makes more variable estimates and is therefore more able to detect shifts

in demand. For example, the Wikipedia model correctly nowcasts the big demand

spikes in June 2016 and January 2017, whereas the baseline model does not. There-

fore, the Wikipedia model may have been able to provide early warning of the US

Fentanyl epidemic.

5.3.2 Modelling each drug separately

We have both country and time dimensions in the data, which increases the sample

size for each individual drug. This allows us to fit separate models for each drug i:
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Figure 5.4: Out-of-sample adaptive nowcasting results - pooled model. This
plot shows out-of-sample adaptive nowcast results using a model that pools data
from all drugs. The red bars show mean absolute error (MAE) from the baseline
model, where the error refers to the error in estimating the monthly percentage
change in demand. The mean is the mean across drugs. The blue bars show MAE
from the Wikipedia model. Adding Wikipedia data to the model reduces nowcast
MAE in almost every time period. The average reduction in error across the sample
is 43%. Therefore, Wikipedia data is also a strong out-of-sample predictor for drug
demand.

yi,j,t = βi0yi,j,t−1 + βi1Xi,j,t + δij + γit (5.4)

The parameters βi0, β
i
1, α

i
j and γit now vary by drug. This allows for the model

estimates to vary more: for example we can estimate a separate feature weight on

Wikipedia views for each drug. The Wikipedia model from Equation 5.4 now has

299 features, compared to 35 features for the model from Equation 5.3. The models

may be more accurate, but also more prone to overfitting. This is particularly true

for the dummies, as there will be far fewer data points to fit each of them. For

example, there are on average only 5 data points to fit each time dummy in the

Fentanyl model, which may not be enough to avoid overfitting. We therefore focus

on the out-of-sample model performance.

We again assess out-of-sample performance using adaptive nowcasting, but

we perform this separately for each drug. Figure 5.6 compares nowcast results

between the baseline and Wikipedia models. The MAE is the mean across the

entire nowcasting procedure for a given drug - we do not display results over time
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Figure 5.5: Out-of-sample nowcast of US demand for Fentanyl in the USA.
This figure compares performance of the baseline model against the Wikipedia model
for nowcasting US fentanyl demand. The black series is the true change in demand.
The red series is the out-of-sample nowcast from the baseline model. The blue se-
ries is the out-of-sample nowcast from the Wikipedia model. The Wikipedia model
makes more variable estimates and is therefore more able to detect shifts in de-
mand. For example, the Wikipedia model correctly detects the big demand spikes
in June 2016 and January 2017, whereas the baseline model does not. Therefore, the
Wikipedia model may have been able to provide early warning of the US Fentanyl
epidemic.

as in Figure 5.4. We do not include any dummies in these models due to the small

sample size for some drugs.

Adding Wikipedia data reduces nowcast errors for every drug relative to the

baseline. The average MAE reduction across drugs is 42%. Therefore, Wikipedia

data remains a strong indicator of demand when modelling each drug separately.

5.3.3 Modelling each country separately

Similarly to Section 5.3.2, we can also fit a separate model for each country j:

yi,j,t = βj0yi,j,t−1 + βj1Xi,j,t + αji + γjt (5.5)

The parameters βj0, βj1, αjj and γjt now vary by country, which again allows

for greater model complexity.
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Figure 5.6: Out-of-sample adaptive nowcast results, modelling each drug
separately. This plot show out-of-sample adaptive nowcast results when construct-
ing a separate model for each drug. We do not include any dummies in these models
due to the small sample size for some drugs. The red bars show mean absolute error
(MAE) from the baseline model, where mean refers to mean across time periods for
the entire nowcast period. The blue bars show MAE from the Wikipedia model.
Adding Wikipedia data reduces nowcast errors for every drug relative to the base-
line. The average MAE reduction across drugs is 42% relative to the baseline model.
Therefore, Wikipedia data remains a strong indicator of demand when modelling
each drug separately.

Figure 5.7 presents out-of-sample adaptive nowcast results when modelling

each country separately. We fit a separate model for each country, so each country

has its own feature weights on the autoregressive term and Wikipedia page views.

MAE is the mean error across the entire nowcasting procedure, for a given country.

Adding Wikipedia data to the baseline improves accuracy in every country

relative to the baseline, which is consistent with previous models. The average MAE

reduction across countries is 40%. Therefore, Wikipedia data remains a strong out-

of-sample predictor when modelling each country separately.

The results from the separate modelling approaches suggest that accuracy

may be reduced at lower sample sizes, particularly for the baseline model. Figure

5.6 shows that MAE tends to be greater for drugs with fewer sales, such as 2CB

and DMT, than more popular drugs such as MDMA and Cannabis. The correla-

tion between the size of the drug category we are predicting, as measured by sales
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volume, and MAE for that category is -.78 for the baseline model and -.73 for the

Wikipedia model. The results from modelling each country separately, discussed

later in Section 5.3.3, further support this conclusion. The correlation between the

size of the country, as measured by sales volume, and MAE for that category is -.81

for the baseline model and -.68 for the Wikipedia model. Series with smaller sample

sizes are likely to be more volatile, therefore harder for an autoregressive model to

nowcast. Adding Wikipedia data is therefore likely to improve accuracy more where

sales data is sparser, which could be particularly useful in detecting emerging drugs

such as the novel psychoactive substances.
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Figure 5.7: Out-of-sample adaptive nowcast results, modelling each coun-
try separately. This plots show out-of-sample adaptive nowcast results when con-
structing a separate model for each country. The red bars show mean absolute error
(MAE) from the baseline model, where mean refers to mean across time periods for
the entire nowcast period. The blue bars show MAE from the Wikipedia model.
Adding Wikipedia data reduces nowcast errors for every country relative to the
baseline. The average MAE reduction across drugs is 40%. Therefore, Wikipedia
data remains a strong indicator of demand when modelling each country separately.

There may be an issue with the geographic link between Wikipedia page

views and darknet sales. The Wikipedia data is split by language of the page (e.g.

French), whereas the darknet sales are split by country of sale (e.g. France). The link

between them is likely to be strong when the language is not widely spoken outside

its origin country, such as Dutch. However there are languages where the country
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of origin is less clear, such as English. We analyse this issue in Figure 5.7, which

presents results from modelling each country separately. There is some evidence that

the Wikipedia model performs worse for countries with a shared language, such as

the US and Australia. Nevertheless, the difference is small and the Wikipedia model

outperforms the baseline across all countries. Future research could use internet

search data where the user’s location is known, such as Google Trends, rather than

inferred from language.

5.3.4 Robustness

Our main results, depicted in Figure 5.4, set a training window of 12 months. Table

5.2 assesses the robustness of our results to varying training windows. We show that

results do not qualitatively change across a range of windows, from 10 months to

14 months. Therefore, our results are robust to varying training windows.

Table 5.2: Out-of-sample results with different training windows. This
table shows results across a range of training window lengths. The main results use
a fixed 12 month window. The first column shows mean absolute error (MAE) from
the baseline model, where the error refers to the error in estimating the monthly
percentage change in demand. The mean is the mean across drugs. The second
column shows MAE from the augmented model that includes Wikipedia data. The
Wikipedia model outperforms the baseline across all training windows, with similar
performance to the 12 month window that our main results are based on. We
therefore conclude our results are robust to varying the training window.

Training window Baseline MAE Wikipedia MAE

10 months 0.51 0.30
11 months 0.52 0.30
13 months 0.52 0.31
14 months 0.53 0.29
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Table 5.3: Out-of-sample results at different aggregation frequencies. This
table shows results across a range of aggregation frequencies. Our main results
aggregate data to 1 month frequency, but we could analyse in a higher or lower
frequency space as our data is daily frequency. Column 1 shows mean absolute error
(MAE) from the baseline model, where the error refers to the error in estimating
the monthly percentage change in demand. Column 2 shows MAE after inclusion of
Wikipedia data. Our results are qualitatively robust to all aggregation frequencies
from 2 weeks to 8 weeks. However, the Wikipedia model performance is relatively
stronger at lower frequencies. This suggests there may be a trade-off between model
speed and accuracy.

Aggregation frequency Baseline MAE Wikipedia MAE

2 weeks 0.45 0.30
4 weeks 0.50 0.30
6 weeks 0.55 0.32
8 weeks 0.61 0.29

Table 5.4: Out-of-sample results using different start dates for the data.
The main text results use a start date of July 2015, which keeps all possible data.
However, this may induce coverage errors because of listings removed by vendors
(see Section 6.2.1.) The later the start date, the less the darknet scrape’s coverage
is affected by removed listings. The first column shows mean absolute error (MAE)
from the baseline model. The second column shows MAE from the augmented
model that includes Wikipedia data. The Wikipedia model outperforms the baseline
regardless of the start date, indicating robustness to a variety of start dates.

Start date Baseline MAE Wikipedia MAE

April 2016 0.47 0.29
July 2016 0.45 0.27
October 2016 0.50 0.27
January 2017 0.57 0.35
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Given the daily frequency of our data, we can vary the time frequency of our

nowcasting models. Higher time frequencies may be more useful for policymakers

as they would get a faster estimate of drug use. However the sales data is sparser

at higher frequency, as shown in Figure 5.2.

Table 5.3 shows results across a range of aggregation frequencies. Our re-

sults are qualitatively robust to all aggregation frequencies, but stronger at lower

frequencies. This suggests there may be a trade-off between model speed and accu-

racy. Nevertheless, the monthly frequency of our main results would still be much

faster than the current annual survey data.

Finally, our main results use a start date of July 2015. As discussed in

Section 6.2.1, this maximises our sample size. However, it is likely to induce coverage

errors in the data as some of the earlier listings were removed by vendors. Table 5.4

shows results using different start dates for the data. Our results are qualitatively

robust to a variety of start dates.

5.4 Discussion

Table 5.1 shows that past drug sales data alone cannot accurately nowcast current

drug sales. However our results consistently show that adding Wikipedia data,

which is reliably available in real-time, greatly boosts nowcast performance. We

present results using two broad approaches: a pooled approach, where all drugs are

modelled jointly, and a second approach where we model each drug and country

separately. In all specifications, Wikipedia page views reduce nowcast errors by at

least 40% relative to the baseline model.

The average nowcast errors in the pooled model, shown in Figure 5.4, are

comparable to the errors when modelling each drug separately, shown in Figure 5.6.

This suggests we should use the pooled model, as it may allow nowcasting demand

for drugs with little available data. This would be particularly useful when new

drugs are entering the market, such as the novel psychoactive substances, which

traditional surveys struggle to capture [Smith and Garlich, 2013].

We acknowledge limits to the external validity of extrapolating our darknet

results to nowcasting overall drug use. There are known demographic biases with in-

ternet usage [Graham et al., 2015], so darknet drug users may not be representative

of drug users overall. If so, this may diminish the nowcast value of Wikipedia data for

overall drug use. However, previous research found that darknet demand geograph-

ically represents overall drug demand well for cannabis, cocaine and heroin [Dittus

et al., 2018]. Moreover, the Wikipedia model performs well across a range of drugs,
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as shown in Figure 5.6. If demographic bias were affecting our results, we may

expect the Wikipedia model to perform better among drugs whose consumers use

the internet more, such as DMT, LSD and 2C-B [Kruithof et al., 2016]. We cannot

find strong evidence of this, with the Wikipedia model performing well for harder

“street” drugs such as heroin and cocaine, whose demographics are less represented

among internet users [Kruithof et al., 2016]. Furthermore, nowcasting darknet de-

mand itself may be of interest given its rapid growth over the last decade [Soska

and Christin, 2015].

Now that we have shown Wikipedia views can nowcast darknet sales at high

time frequency, a next step would be to show that that this relationship generalises to

wider drug demand. This is beyond the scope of this chapter, but there is literature

supporting this relationship with other internet search data. A recent study showed

strong correlations between the volume of Reddit comments in US states and annual

opioid use, as measured by CDC surveys [Balsamo et al., 2019]. Another paper

showed correlation between Google searches for novel psychoactive substances and

changes in their global consumption, measured by UNODC surveys [Perdue et al.,

2018]. While out of scope for this paper, future work demonstrating these results

hold out-of-sample at high time frequencies would be valuable.

This chapter analysed whether darknet and internet search data can help

build a high frequency measure of drug demand. The darknet drug markets are

a promising real-time data source, but analysts may not reliably be able to access

them due to frequent outages. We show that a model including Wikipedia page views

greatly improves nowcast accuracy, particularly when darknet data is unavailable

for long periods. These results hold out-of-sample across all drugs and a range of

modelling choices. Wikipedia page views most improve nowcast accuracy for less

popular drugs, suggesting our model may be particularly useful for detecting newly

emerging substances. We acknowledge there are limits on extrapolating results from

darknet data to wider drug consumption, due to demographic biases among internet

users. Nevertheless, we believe there is strong evidence overall that internet data

may greatly improve the speed of official drug statistics, which are currently annual

frequency. This may help policymakers respond more quickly to the next drug

epidemic.
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Chapter 6

Faster indicators of chikungunya

incidence using Google searches

6.1 Introduction

Chapter 5 analysed whether online search data could improve nowcasts of illicit drug

demand, which is a major public health issue. This chapter analyses a different

public health application for nowcasting: monitoring the spread of disease. The

analysis focuses on chikungunya, a mosquito-born viral disease or arbovirosis, which

is a growing global public health challenge. In Brazil, there have been 100,000

to 250,000 reported cases per year since 2016 [Secretaria de Vigilância em Saúde,

2020]. Infections lead to severe health complications in around 25% of cases, such

as paralysis and long-term debilitating syndromes [Aguiar et al., 2018; Schilte et al.,

2013; de Brito, 2017]. Fatality rates may also be higher than previously recognised,

due to challenges in determining the cause of death [de Brito, 2017]. Chikungunya

incidence is highly seasonal, with one epidemic per year during the warmer months

when mosquitoes are more active. Epidemics in Ceará, Brazil, have caused major

disruptions to their healthcare system [Bastos et al., 2018], and the economic costs

from treatment and workplace absence are often catastrophic for the low-income

households affected by chikungunya [Gopalan and Das, 2009].

Infectious disease surveillance relies on doctors to enter cases into the mon-

itoring system. Disease statistics are prone to delays, as there is often a long lag

between a patient seeking treatment and entry of the case [Codeço et al., 2018].

In Rio de Janeiro, chikungunya surveillance delays average around four weeks, with

data arriving gradually and inconsistently. Public health policymakers need accurate

real-time data on disease incidence in order to respond quickly to epidemics [Olliaro
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et al., 2018]. Faster surveillance is helpful in many ways: helping doctors to decide

between different diseases with similar symptoms, better targeting of mosquito con-

trol activities and increasing awareness in the general population. More broadly,

failure to respond at sufficient speed to the spread of other diseases can have catas-

trophic consequences, and may have raised the death toll from fast-growing epi-

demics such as the Covid-19 crisis [Sun et al., 2020; Galea et al., 2020].

Online data is a useful source of information for improving the speed of

disease surveillance. People experiencing symptoms of a disease may not only con-

sult a medical professional for help, but also search for information on Google. In

contrast to official case counts, data on Google searches are reliably available in

real-time [Google Trends API, 2020]. Previous studies have shown a relationship

between internet search data and case counts for diseases such as the flu [Ginsberg

et al., 2009; Preis and Moat, 2014] and dengue [Chan et al., 2011a; Mizzi et al.,

2021]. Here, we investigate whether Google search data can help generate faster

estimates of chikungunya case counts in Brazil.

As a reminder from previous chapters, estimating the value of statistics before

they are officially released is known as “nowcasting”. A promising sign that internet

search data may help nowcast chikungunya can be found in one study that reports a

positive correlation between Google search activity and chikungunya incidence in the

Amazon [Naveca et al., 2019]. The question is whether this is a sufficiently strong

and consistent relationship to improve the accuracy and precision of chikungunya

nowcasts, in comparison to a model that uses historic chikungunya case data alone.

To investigate this question, we build on a Bayesian approach specifically designed

for nowcasting where case data is subject to long and varied delays [Bastos et al.,

2019; Mizzi et al., 2021]. Better chikungunya nowcasts could help public health

authorities respond more quickly to future epidemics, therefore mitigating their

damage [Coelho and Codeço, 2019].

6.2 Data and methods

6.2.1 Data

We use two main data sources in this chapter. The first is chikungunya case data

from Brazil’s disease monitoring system, henceforth referred to as SINAN (Sistema

de Informação de Agravos de Notificação) [SINAN, 2020]. The second is Google

search data from the Google Health Trends API.

We obtain chikungunya case data for Rio de Janeiro through the InfoDengue

project [Codeço et al., 2018]. Our case data begins in January 2016, shortly after
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the start of the first chikungunya epidemic in Rio de Janeiro, and ends in December

2019. The raw data is case-level: for each case we have access to a notification date

and an entry date. The notification date is the date at which a doctor first diagnoses

a chikungunya case. The entry date is the date that a confirmed chikungunya case

is entered into the system. This will usually be based on symptoms alone, as only

10% of cases are confirmed by laboratories. If a laboratory finds that a chikungunya

case is falsely diagnosed, it is retroactively removed from the system.

Table 6.1 shows that case entry usually occurs well after notification; only

50% of notified cases are entered into the system within 2 weeks of notification.

There are also some very long delays in the data, such that 26% of notified cases are

still not entered after 4 weeks, and 13% of notified cases are still not entered after

8 weeks. We verify whether the delays are similar when only considering epidemic

periods, as defined by the Moving Epidemic Method (MEM) Vega et al. [2013].

The MEM analyses the frequency of cases across the sample to set a weekly case

threshold, above which the week would be defined as an epidemic period. For our

data, the epidemic threshold identified by the MEM is 104 cases. The second row

of Table 6.1 shows that delays during epidemic periods are similar to delays when

considering all of the data. However, Table 6.1 also reveals that 58% of weeks in this

dataset fall in an epidemic. For this reason, we further examine the pattern of delays

in different years, to help us understand whether delays are impacted by the size of

the epidemic. We find little difference between the delays witnessed in individual

years and those in the sample as a whole, regardless of the size or presence of an

epidemic in each of the years. This suggests that any differences in the performance

of the model in these different time periods are unlikely to be due to differences in

the structure of the delays.
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Table 6.1: Delays between chikungunya case diagnosis and entry into the
disease surveillance system, in days. There is often a long delay of weeks or
months between initial diagnosis of a chikungunya case and entry of that case into
the monitoring system. Varied delays make nowcasting on a weekly basis more
difficult, as we lack complete data on both the most recent week and the weeks
shortly preceding it. The first row describes the distribution of delays across the
sample as a whole, in days. Only 26% of cases are reported after 1 week, and 74%
after 4 weeks. We further find evidence of a tail of cases with very long delays, with
13% of cases still not entered 8 weeks after notification. The second row describes
the distribution of delays during epidemic periods, which are weeks in which the case
count exceeds 104 cases. This is very similar to the sample as a whole. Similarly,
we find that the distribution of delays in non-epidemic periods (third row) and the
distributions of delays by year (fourth to seventh rows) do not differ greatly to the
distribution of delays for the sample as a whole. This suggests that any differences
in the performance of the model in these different time periods are unlikely to be
due to differences in the structure of the delays.

Number of Weeks 1 Week 2 Weeks 4 Weeks 8 Weeks

All Periods 208 26% 50% 74% 87%
Epidemics 121 26% 51% 76% 90%
Non-Epidemics 87 26% 48% 72% 84%
Only 2016 52 31% 51% 68% 82%
Only 2017 52 27% 49% 76% 88%
Only 2018 52 24% 49% 78% 91%
Only 2019 52 23% 49% 76% 89%
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Figure 6.1: Chikungunya case data availability for a given week. Data on
previous chikungunya cases arrives gradually and inconsistently. We illustrate this
problem using the week beginning 26 May 2019 - the peak of the 2019 epidemic
in Rio de Janeiro. The black series show the true number of cases in each of the
previous weeks. The red series show how many of these cases had been entered into
the surveillance system by the end of the week. The upper panel shows that only
20% of the 2895 cases for the week of the 26 May 2019 had been entered by the end
of the week. The middle panel shows the data is still very incomplete 8 weeks later,
with only 74% of cases from 26 May 2019 being entered. The lower panel shows
that the data is still not complete even after 16 weeks, with only 93% of cases being
entered.
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The length and inconsistency in reporting delays makes nowcasting chikun-

gunya incidence much more difficult. Figure 6.1 shows a snapshot of data availability

for the week of 26 May 2019. There were 2895 diagnosed cases during the week,

but they were entered into the system only gradually over the following weeks, with

around 25% of cases still not entered after two months. At the end of the example

week, the data on previous weeks was similarly incomplete, with completeness being

worse for more recent weeks. Nowcasting methods traditionally rely on complete

data about the past. Therefore, without aggregating this data to a very low tempo-

ral resolution, it is difficult to accurately nowcast chikungunya incidence using past

case data alone.

Our second source of data is on Google search behaviour, which is available

in real-time from the Google Health Trends API. This provides data at weekly

frequency from January 2016 to December 2020 on searches related to chikungunya.

To retrieve data on searches related to chikungunya, we use Wikidata [Wikidata

API] to identify the Freebase topic ID for chikungunya (/m/01 7l), in line with the

approach taken in previous work on dengue [Mizzi et al., 2021].

Figure 6.2 shows that spikes in Google searches for chikungunya may provide

a rapid indicator of higher case counts. There is visually a strong correlation, with

the peaks in Google searches occurring on or before the epidemic peaks in 2016, 2018

and 2019. The magnitude of spikes in Google searches are also visually a good fit

for the magnitude of epidemics, with the biggest spikes in searches occurring during

the 2016 and 2019 epidemics.

The Google data is reliably available in real-time: at the end of any given

week, we have a complete record of search behaviour for that week. This clearly

does not apply to the official chikungunya case data, where we lack complete data

on both the current week and previous weeks. Therefore, Google data may help us

nowcast chikungunya case counts.

We considered including alternative internet data in our nowcasting model,

such as Twitter mentions of chikungunya. However, previous research on nowcasting

dengue fever showed that adding Twitter data only slightly improved a model that

already included Google Trends data [Mizzi et al., 2021]. Therefore, we chose to

focus on Google Trends data for this model.
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Figure 6.2: Comparing chikungunya case counts and Google searches over
time. Panel A shows how chikungunya cases have evolved since 2016. The black
series shows the number of cases diagnosed in each week. The red series shows the
number of cases diagnosed in a given week that have been entered into the disease
surveillance system by the end of that week. Entered cases are an inconsistent frac-
tion of notified cases, and this issue is most severe during the large epidemics in 2016
and 2019. This makes estimating current chikungunya case counts from the official
data alone particularly challenging. Panel B compares the weekly notified cases
against weekly Google searches for chikungunya-related terms, which are available
in real-time. Visually there is a strong correlation, with Google searches peaking
during the large epidemics in 2016 and 2019. The size of the peaks in Google searches
also seems to match the size of the epidemics, with the largest peaks during the 2016
and 2019 epidemics. Google search data may therefore provide a rapid indicator of
chikungunya case counts.

89



6.2.2 Methods

Our objective is to estimate the current weekly case count Xt. The method must

be operationally feasible, using only data available by the end of week t.

Our baseline model uses only data on previous chikungunya incidence to per-

form the estimation. Traditional nowcasting methods assume complete data about

previous weekly cases (Xt−1, Xt−2, ..., X0) is available at time t. This assumption

does not hold for chikungunya data, as shown in Section 6.2.1, where cases are often

entered only after a long delay. Following previous work on dengue [Mizzi et al.,

2021], we therefore use an alternative baseline nowcasting model developed for case

count data that arrives gradually and inconsistently [Bastos et al., 2019]. For each

week, this model aims to estimate the number of cases that will be entered into the

system with a given number of weeks delay, using data available in week t.

Table 6.2: Stylised example of chikungunya case count data availability for
a given week. This matrix provides a stylised example of the chikungunya case
count data available when nowcasting cases for a given week. In this example, we
hold data from week 1 onwards and are currently in week 7. We assume here that
the maximum delay in entering a case into the surveillance system is five weeks.
Each row represents a previous week (t) of entered cases, and the column represents
the entry delay (d) in weeks. For example, we can see that there were initially 15
cases entered into the system in week 2, 8 further cases after a delay of 1 week, 10
cases after a delay of 2 weeks, and so on. Case data is incomplete, not only for week
7 but also weeks 3 through 6. The incompleteness is usually worse the closer we are
to the current period, so there is a running “triangle” of unknown case counts and
associated delays to be estimated for previous weeks. Estimating each cell in the
last row of this triangle yields a nowcast of the total case count for week 7. The
method introduced by Bastos et al. [2019] provides an approach for generating these
estimates.

Delay in weeks (d)

0 1 2 3 4 5 Total

Week
(t)

1 10 12 6 4 1 1 34
2 15 8 10 2 4 1 40
3 19 9 13 5 2 ? ?
4 19 9 13 5 ? ? ?
5 17 25 11 ? ? ? ?
6 26 20 ? ? ? ? ?
7 39 ? ? ? ? ? ?

Table 6.2 provides a stylised example of this procedure. To estimate total

cases in week t, we must therefore estimate how many cases will be entered with a
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delay of d weeks (xt,d), where

Xt =
D∑
d=0

xt,d

Following Bastos et al. [2019], we assume xt,d has a negative binomial distribution:

xt,d ∼ NB(λt,d, φ)

We estimate the mean of this distribution, λt,d, with the following specification:

log (λt,d) = α+ βt + γd

where

• α is a time-invariant constant.

• βt is a first order random walk (rw1) random effect βt ∼ N (βt−1, σ
2
β) capturing

serial correlation in case counts. If we observe larger case counts in the previous

week, we estimate a higher case count for the current week.

• γd is an rw1 random effect γd ∼ N (γd−1, σ
2
γ) capturing serial correlation in the

number of cases reported with a given number of weeks delay. If we observe a

greater number of cases with d− 1 weeks delay, we estimate a higher number

of cases with d weeks delay too.

We fit the parameters for this specification via Integrated Nested Laplace Ap-

proximation (INLA) method [Rue et al., 2009]. We estimate each xt,d via sampling,

which yields a posterior distribution of estimates for Xt =
∑D

d=0 xt,d. This distri-

bution provides a natural measure of uncertainty, with wider distributions implying

greater uncertainty.

We estimate each week t >= 21 following an adaptive nowcasting proce-

dure [Preis and Moat, 2014]. We initially train a model with the first 20 weeks of

data. The model then outputs a posterior distribution of estimated case counts for

week 21. We record the difference between the mean case count estimate and the

true case count as the model’s out-of-sample nowcast error.

In each following week t > 21, we re-train the model with all available data

at week t. Therefore, the model “adapts” over time. Taking into account the

conclusions of previous work on dengue in which the benefit of varying training

window size was investigated, we always use all available data rather than a fixed

training window [Mizzi et al., 2021]. Epidemics are infrequent, so we do not want

to risk losing them from the training data with a shorter training window.
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We now define our “Google model”. This is similar to the baseline model,

but also includes Google data Gt:

log(µt,d) = α+ βt + γd + δlog(Gt)

where δ is a regression coefficient.

Google search data are fully available by the end of the week. We can there-

fore include Gt directly, rather than having to estimate it in the same way as the

chikungunya case data.

Following Yang et al. [2017], our final model is a “heuristic” approach, using

the notified cases for week t − 3 that have been entered by week t. As shown in

Panel A of Figure 6.2, this model will not be accurate due to reporting delays.

Nevertheless, it provides important context – our baseline already provides a large

improvement over a heuristic approach. We are therefore analysing whether Google

data can help us further improve the performance of a carefully chosen baseline

model that is well-suited to this nowcasting problem.

6.3 Results

Following previous work on nowcasting dengue [Mizzi et al., 2021], we calculate a

range of metrics for our models to allow us to investigate both accuracy and precision

of our estimates. For all models, we report accuracy in terms of mean absolute error

(MAE), where a lower error reflects a more accurate model. We report precision in

terms of the mean 95% prediction interval width (MPI), where a smaller interval

represents greater model precision. It is important to verify that any reduction in

the size of the 95% prediction interval is not simply due to the interval becoming too

narrow and no longer reliable. We therefore also report interval reliability, in terms

of the percentage of true weekly case counts that fall within the 95% prediction

interval for that week. 95% of true weekly cases falling within the 95% prediction

interval represents good interval reliability. Finally, we report results both for the

full period and when considering epidemic periods alone, as epidemics are likely to

be particularly important for policymakers. We define epidemic periods using the

104 weekly case threshold previously calculated by the MEM [Vega et al., 2013].

Table 6.3 compares accuracy across the heuristic, baseline and Google mod-

els. The baseline model is much more accurate than the heuristic model, reducing

MAE by 34% across the sample. The Google model further improves upon the base-

line, reducing MAE by 41% relative to the heuristic model. Panel A of Figure 6.3

shows that the Google model predictions are rarely far from the true case number.
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Figure 6.3: The Google model’s performance over time and relative to
the baseline model. Panel A shows nowcast results over time from the Google
chikungunya nowcasting model. The Google model’s estimates are relatively accu-
rate across the sample. Moreover, the ground truth rarely falls outside the 95%
intervals. Panel B compares relative nowcast errors, in case numbers, between the
baseline and Google models. Blue indicates the Google model error is lower, and
red indicates the baseline model error is lower. Overall the Google model errors are
lower, although there is some volatility around epidemic periods. Panel C compares
relative prediction interval width, in case numbers, between the baseline and Google
models. The Google model interval is generally narrower, except for the period at
the start of the 2019 epidemic. However, Table 6.5 shows that the baseline model
intervals may be unreliable during an epidemic. Several of the true weekly case
counts at the start of the 2019 epidemic fall outside the baseline interval (see 6.4),
but within the Google interval.



In Table 6.3, we report the accuracy of the model estimates during epidemics

as well as across the full period. The improvement offered by the baseline model

over the heuristic model increases further during epidemics, reducing MAE by 35%.

In turn, the improvement offered by the Google model over the baseline model

increases too, reducing MAE by 43% relative to the heuristic model.

Table 6.3: Comparison of baseline and Google model chikungunya now-
casting accuracy. This table compares the mean absolute errors (MAEs) for the
nowcasts produced by the heuristic, baseline and Google models. The first two
columns show results across the sample as a whole, reported in number of cases and
relative improvement space respectively. The baseline is far more accurate than the
heuristic model, reducing MAE by 34%. The Google model improves further upon
the baseline, reducing MAE by 41% relative to the heuristic model. The third and
fourth column show results when only considering epidemic periods. Here we see
that the accuracy boosts offered by both the baseline and Google models increases
further: the baseline model reduces MAE relative to the heuristic model by 35%,
and the Google model reduces MAE by 43%.

Model
All periods Epidemics

MAE Relative MAE MAE Relative MAE

Baseline 124.8 0.66 212.8 0.65
Google 110.9 0.59 187.7 0.57
Heuristic 187.9 1.00 327.0 1.00

Panel B of Figure 6.3 shows there are few periods during epidemics where

the baseline model outperforms the Google model. This is further corroborated

when splitting the errors by year, as shown in Table 6.4. The Google model most

outperforms the baseline model during the years with epidemics (2016, 2018 and

2019). There is little difference between the two models in 2017.

Table 6.5 compares the precision of the baseline and Google models in terms

of the mean 95% prediction interval width (MPI). The heuristic approach does not

allow an interval to be calculated. Panel A of Figure 6.3 shows that ground truth

weekly case counts very rarely fall outside the Google model 95% prediction interval.

Furthermore, there are no instances where the ground truth falls far outside the

prediction interval.

The Google model is more precise than the baseline model, reducing MPI by

7%. While the prediction interval width increases for both models when considering

epidemic periods alone, the Google model remains 8% more precise than the baseline.

This precision advantage holds for each year in the sample. Table 6.6 shows baseline

and Google model intervals for each year individually. The Google model reduces
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Table 6.4: Comparison of model errors by year. In each year with an epidemic
(2016, 2018 and 2019), the Google model outperforms the baseline model. There is
little difference between the Google and baseline models in 2017. Note that poor
performance in 2016 relative to the heuristic approach is because the models are
initiated during an epidemic, therefore lack training data.

Period Baseline Google Heuristic

2016 MAE 199.8 167.8 103.6
Relative MAE 1.93 1.62 1.0

2017 MAE 9.2 10.0 18.1
Relative MAE 0.50 0.56 1.0

2018 MAE 54.2 48.0 112.2
Relative MAE 0.48 0.43 1.0

2019 MAE 264.8 239.8 485.4
Relative MAE 0.55 0.49 1.0

Table 6.5: Comparison of baseline and Google model chikungunya now-
casting precision. This table compares the mean prediction interval widths
(MPIs) for nowcasts from the baseline and Google models. The heuristic model
is omitted as this approach does not allow a prediction interval to be calculated.
The first three columns show results across the sample as a whole. The first column
is the MPI reported in number of cases; the second column is the MPI relative to
the baseline model; and the third column is the percentage of actual weekly case
counts within the prediction interval. The Google model is more precise than the
baseline model, reducing MPI by 7%. It is also slightly more reliable, capturing 93%
of actual weekly case counts relative to 91% for the baseline model. The final three
columns show similar results when considering epidemic periods only. While the
intervals are much wider for both models, the Google model again reduces MPI by
8%. The Google intervals are also even more reliable relative to the baseline during
epidemics, capturing 93% of weekly case counts relative to 88%.

Model
All periods Epidemics

MPI Relative MPI % Correct MPI Relative MPI % Correct

Baseline 524.2 1.00 91.0 873.6 1.00 88.1
Google 485.6 0.93 92.6 805.5 0.92 93.1

the mean prediction interval width by between 4% and 14% each year.

Finally, the Google model is also more reliable than the baseline model.

Across the sample as a whole, the Google model interval captures 93% of the ground

truth while the baseline model only captures 91%. This difference is larger during

epidemics; the Google model captures 92% of the ground truth whereas the baseline
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Table 6.6: Comparison of model intervals by year. The Google model is more
precise than the baseline model in each year. This precision advantage ranges from
4% to 14%. Note that the intervals are overconfident in 2016, likely due to the lack
of training data at this point.

Period Baseline Google

2016 MPI 650.8 558.3
Relative MPI 1.0 0.86
% correct 65.6 62.5

2017 MPI 75.8 71.9
Relative MPI 1.0 0.95
% correct 98.1 96.2

2018 MPI 337.4 323.4
Relative MPI 1.0 0.96
% correct 96.2 100

2019 MPI 1081.5 1016.8
Relative MPI 1.0 0.94
% correct 94.2 100

model captures only 88%. The slight overconfidence of the intervals seems largely

driven by the first epidemic, where the model had little data to train on. Table 6.7

shows results excluding the first epidemic. The ground truth falls within the baseline

interval 94% of the time, and the Google interval 96% of the time. The intervals

are more reliable for both the baseline and Google models This shows that the

overconfidence was likely driven by lack of training data for the first epidemic rather

than issues with the modelling approach.

Table 6.7: Prediction intervals excluding the first epidemic. In Table 6.5,
we note that the 95% intervals for both models are slightly overconfident. We
suspect that this is due to the first epidemic, where the model must make predictions
given little training data. This table shows predictive intervals excluding the first
epidemic, as we restrict the sample to dates after 1 September 2016. Both baseline
and Google model intervals seem more reliable, with the ground truth falling within
the interval 94% and 96% of the time respectively.

All periods Epidemics
Model MPI Relative MPI % correct MPI Relative MPI % correct

Baseline 468.2 1.00 94.2 817.7 1.00 93.1
Google 444.1 0.95 96.0 773.7 0.95 98.9

Panel C of Figure 6.3 shows that some of the periods where the baseline
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interval is narrower than the Google model interval occur during epidemics, par-

ticularly early in 2019. However, several of the true weekly case counts during the

early 2019 epidemic fall outside the baseline interval (see Figure 6.4), but within

the Google interval. Therefore, the narrower baseline intervals may not be reliable

during an epidemic, which further favours the Google model.

Visual examination of Figure 6.3B suggests that the Google model may be

particularly effective relative to the baseline prior to the epidemic peak. We analyse

results from 2018 and 2019, as we do not have data from the onset of the 2016

epidemic, and there was no epidemic in 2017. For each year, we consider weeks in

which the case count is above the epidemic threshold of 103 cases. We split this

data into the period prior to the epidemic peak and the period after the epidemic

peak.

Table 6.8 shows that the Google model errors are 16% lower than the baseline

in the period prior to the 2018 epidemic peak Similarly, Table 6.9 shows that the

Google model errors are 15% lower than the baseline prior to the 2019 peak.

Table 6.8: Errors during the 2018 epidemic The Google model errors are 16%
lower than the baseline prior to the epidemic peak. Google model errors are 7%
lower after the epidemic peak.

Before peak Post peak
Model MAE Relative MAE MAE Relative MAE

Baseline 99.6 0.44 50.0 0.51
Google 83.5 0.37 46.6 0.48
Heuristic 226.9 1.00 97.1 1.00

Table 6.9: Errors during the 2019 epidemic The Google model errors are 15%
lower than the baseline prior to the epidemic peak. However, Google errors are 4%
higher than the baseline after the epidemic peak.

Before peak Post peak
Model MAE Relative MAE MAE Relative MAE

Baseline 447.6 0.57 182.7 0.47
Google 380.8 0.49 189.6 0.49
Heuristic 783.7 1.00 385.4 1.00

Similarly, visual comparison of the baseline model’s performance in Figure 6.4

to the Google model’s performance in Fig. 6.3A suggests that the Google model’s

prediction intervals may be more reliable in the period prior to the epidemic peak.
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Figure 6.4: Predictions and intervals from the baseline model. In Figure 6.3,
we note there are some periods where the baseline interval is narrower than the
Google interval. However, we note these may be periods where the baseline interval
is overconfident. This figure shows baseline model performance over time. At the
start of the 2019 epidemic, there are several periods where the ground truth falls
outside the baseline model interval. This corresponds to the timespan where the
baseline model intervals are narrower than the Google model intervals. Therefore,
the narrower baseline intervals may be less reliable in the period before the epidemic
peak, which further favours the Google model. We examine this suggestion further
in Table 6.10 and Table 6.11.

The prediction intervals produced by the Google model are larger in this

period. Table 6.10 shows that the Google model errors are 15% higher than the

baseline in the period prior to the 2018 epidemic peak. Similarly, Table 6.11 shows

that the Google model errors are 14% higher than the baseline prior to the 2019

peak. However, the actual case counts fall within the baseline prediction intervals

only 82% of the time in the period prior to the 2018 epidemic peak and 86% of

the time prior to the 2019 peak. By contrast, the actual case counts fall within the

Google intervals 100% of the time in the periods prior to both the 2018 and 2019

epidemic peaks. Overall, the Google model appears to be more reliable than the

baseline model in the periods before epidemic peaks, displaying lower errors and

greater accuracy of the prediction intervals.

There is less of a difference in model performance during the period following

the epidemic peak. The baseline model is slightly more accurate during this period.
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Table 6.10: Intervals during the 2018 epidemic The Google model intervals
are 15% higher than the baseline before the epidemic peak. However, the baseline
model intervals may be overconfident as the 95% prediction interval is correct only
82% of the time. By contrast, the Google model intervals are correct 100% of the
time.

Before peak Post peak
Model MPI Relative MPI % correct MPI Relative MPI % correct

Baseline 383.3 1.00 81.8 406.3 1.00 100.0
Google 439.4 1.15 100.0 360.3 0.89 100.0

Table 6.11: Intervals during the 2019 epidemic The Google model intervals
are 14% higher than the baseline before the epidemic peak. However, the baseline
model intervals may be overconfident as the 95% prediction interval is correct only
86% of the time. By contrast, the Google model intervals are correct 100% of the
time.

Before peak Post peak
Model MPI Relative MPI % correct MPI Relative MPI % correct

Baseline 1150.3 1.00 85.7 1369.0 1.00 100.0
Google 1309.2 1.14 100.0 1081.6 0.79 100.0

Table 6.8 shows that, following the 2018 epidemic peak, the Google model errors are

7% lower than the baseline model. Table 6.9 shows that, following the 2019 peak,

the Google model errors are 4% higher. These differences are small relative to the

differences prior to the epidemic peaks.

There is some evidence the Google model is more precise than the baseline

following the epidemic peak. Table 6.10 shows that Google model intervals are 11%

narrower than the baseline in 2018. Table 6.11 shows that Google model intervals are

21% narrower than the baseline in 2019. There is no difference in the frequency with

which the actual case counts fall within the prediction intervals: for both models

this is 100% in both 2018 and 2019.

The strong performance of the Google model during epidemic onset periods

may be particularly helpful for providing early warning of epidemics to policymakers.

The MEM estimates the threshold for an epidemic to be 103 weekly cases. We

investigate which model provides the most timely detection of this threshold being

crossed at the beginning of an epidemic. We consider detection of the 2018 epidemic

as a case study, as the case count does not sink below 103 cases for more than two

continuous weeks before the 2019 epidemic. In 2018, the actual case count crosses
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the threshold of 103 cases in epidemiological week 9. In contrast, the heuristic model

does not detect threshold crossing until week 15 of the epidemiological year. The

baseline model detects the epidemic earlier, estimating that the threshold is crossed

in week 12. However the Google model produces the closest estimate, detecting

threshold crossing in week 11. The Google model therefore provides four weeks of

early warning relative to the heuristic approach, which monitors only entered cases.

These four weeks could have been crucial for policymakers seeking to intervene early

in order to limit the spread of chikungunya.

6.4 Discussion

This chapter has analysed whether including Google search data improves chikun-

gunya nowcasts in Rio de Janeiro, Brazil. Chikungunya in Rio de Janeiro is seasonal,

with attack rates varying from year to year. Early warnings of bad outbreaks are

important for delivering timely interventions.

Data on chikungunya cases is usually entered into the surveillance database

with a significant delay after diagnosis, making decisions less timely. These delays

are also inconsistent, increasing the challenge of estimating current chikungunya

case counts from official data alone. Here, we have examined the performance of

three approaches to delivering weekly estimates of chikungunya incidence in Rio de

Janeiro whilst mitigating against delays and incomplete data. These are a heuristic

approach, frequently applied by policymakers in practice, where data on the last few

weeks is simply disregarded; a baseline nowcasting model, as currently implemented

in the InfoDengue system, where a statistical approach is employed to model the

varying delays in the data; and a nowcasting model using Google searches, which

augments the baseline nowcasting model with rapidly available Google search data.

We evaluate the error of the models’ estimates of chikungunya incidence using the

data that was available at the end of each week. For the baseline nowcasting model

and nowcasting model using Google searches, we also examine the size of the predic-

tion intervals accompanying the estimates, to understand how certain policymakers

could be of the estimates delivered.

We find that both the baseline model and the model using Google searches

outperform the heuristic approach by some margin. Importantly, while the baseline

model performs well, we find that including Google search data reduces both now-

cast error and uncertainty relative to the baseline. Our analyses show that including

Google search data reduces nowcast errors between May 2016 and December 2019.

When considering only epidemic periods, which are particularly important for poli-
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cymakers, we find a similar reduction. We further find that including Google search

data reduces nowcast uncertainty, reducing prediction intervals by 8% during epi-

demics and 7% across the sample as a whole. Finally, including Google search data

may make prediction intervals more reliable during epidemics. We find that, dur-

ing epidemics, the prediction interval produced by the model using Google searches

captures 93% of weekly case counts compared to 88% for the baseline interval. Our

model can be used in practice to generate weekly estimates, despite the significant

and varied delays in the entry of chikungunya case count data.

In this analysis, we always train the baseline nowcasting model and nowcast-

ing model using Google searches on all data from earlier weeks, rather than using

a fixed training window. Updating the model to include the most recent data is

important, as the predictive relationship between search data and disease incidence

may change over time [Preis and Moat, 2014; Lazer et al., 2014]. However, previous

work on dengue found little evidence that discarding past data in training leads

to a reduction in error [Mizzi et al., 2021]. As epidemics are infrequent, using all

previous data also helps avoid a situation where the epidemics are lost from the

training data due to a shorter training window. However, one important advantage

of using a shorter fixed size training window is a reduction in computation time.

This advantage accumulates if estimates are being produced for thousands of cities

in parallel, as is currently the case for the InfoDengue platform. Future work could

further examine the performance of the chikungunya nowcasting approaches out-

lined here with a fixed size training window, to ensure that this parameter delivers

the optimal combination of reduced error and rapid computation.

The analysis we present here focuses on the city of Rio de Janeiro. However,

the Google search data is for the state of Rio de Janeiro, rather than the city.

Further research could build on our results by testing whether they hold for other

cities in the state, whose Google search behaviour may be less well correlated with

the state’s overall search behaviour. Promising initial indications are provided by

previous analyses for dengue that demonstrate that state-level Google data can still

help reduce error and uncertainty, even in smaller cities, as shown in Chapter 8

of Mizzi [2019].

Our methods could also be extended to other areas of Brazil, or other

arbovirus-prone regions, such as India, which have experienced chikungunya out-

breaks [Gopalan and Das, 2009]. Inhabitants of other regions may have a different

relationship with the internet. For example, they may use it less frequently to gather

information on illness. It would be valuable to analyse whether Google search data

is still effective for nowcasting in such scenarios. Future work should therefore con-
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sider a wider range of chikungunya-prone regions and states beyond the state of Rio

de Janeiro.

A key limitation of the analysis we present here is the relatively short length

of the case count time series available for training. This spans four years, and hence

approximately 200 weekly data points. Both the baseline model and model using

Google searches overestimate the 2016 epidemic. We suggest that this is due to

the fact that this epidemic falls at the beginning of the sample, when little model

training has been completed. Both models also underestimate the 2019 epidemic.

This is likely to be due to that model training through two smaller outbreaks in

2017 and 2018. Nevertheless, the true data points for the 2019 epidemic still fall

within the 95% prediction interval of the model using Google data. As further data

arrives, it will be possible to continue to monitor the performance of the proposed

nowcasting model.

In the analysis described here, we have also only considered one real-time

data source. Future nowcasting research could include other data sources, whether

measuring other online activity [Mizzi et al., 2021; Marques-Toledo et al., 2017], or

properties of the external environment related to arbovirosis incidence, such as the

weather [Lowe et al., 2014].

Finally, we note that other arboviruses spread by the Aedes aegypti mosquito

in Brazil, such as dengue and Zika, exhibit similar symptoms. This can cause chal-

lenges for medical practitioners in diagnosis. Similarly, increases in Google searches

for one of these diseases could be driven by an increase in cases of another [Mizzi

et al., 2021]. Future research could jointly model their incidence, which may be

more effective than modelling them independently. If so, policymakers would be

able to respond more quickly to epidemics across a range of diseases.
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Chapter 7

Discussion

The Covid-19 crisis has emphasised how access to rapid, accurate statistics is crucial

across both economics and public health. Policymakers must quickly make decisions

on highly impactful policies, such as lockdown, while lacking timely information on

both the state of the economy and the spread of disease among the population.

Currently, statistics in economics and public health are usually released with a long

delay. Statistics authorities are still highly reliant on traditional methods, such

as surveys, to produce their statistics. While well-developed, these methods are

often costly and take up to several months before producing estimates for crucial

statistics. This thesis demonstrates how we can exploit novel data sources, such as

aircraft location data, and techniques from machine learning to improve the speed

and accuracy of statistics. Some of the statistics we analyse, such as aviation’s

contribution to GDP, were prone to particularly rapid change during the Covid-

19 crisis. Policymakers with more timely data on greatly affected sectors, such as

aviation, could in turn have provided support more quickly.

Recent developments in computational social science show great potential for

improving nowcasting [Lazer et al., 2009; Moat et al., 2014]. In economics, where

the term nowcasting was coined [Giannone et al., 2008], there is now a rich method-

ological literature on integrating higher frequency data into low-frequency official

statistics [Kapetanios and Papailias, 2018]. However, the scope of data sources con-

sidered has generally been restricted to existing economic indicators, such as surveys

of business sentiment, and online search data [Choi and Varian, 2009b]. There are

now far more sources of real-time data available, along with a range of techniques

from machine learning with which to transform them into numeric data that is usable

in analysis. We introduce two novel sources of real-time data to economic nowcast-

ing: aircraft location data from the ADS-B protocol, and illicit drug transactions
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scraped from online “darknet” markets. We analyse concrete policy applications,

that use these novel data sources, in nowcasting i) aviation’s contribution GDP and

ii) illicit drug demand.

Similarly in public health, there is also a well-developed nowcasting litera-

ture due the use of nowcasting in epidemiology. Real-time statistics are particularly

important for policymakers combatting rapid disease outbreaks [Allard, 1998; Gins-

berg et al., 2009], who often need to respond quickly to combat rapidly growing

epidemics. However, this literature has often been limited by the short time series

of available data on novel data sources for nowcasting disease outbreaks. Studies

have therefore been limited to documenting correlations between novel data sources

and disease outbreaks, rather than a fuller analysis of out-of-sample nowcast perfor-

mance. This thesis uses time series of sufficient length to consistently analyse the

out-of-sample nowcasting value of novel data sources such as internet search data. A

further issue with nowcasting in epidemiology is that ground truth data on infection

rates is often delivered with a long and variable delay. Models that rely on having

regular, complete information about previous periods in the time series are therefore

often unusable in practice. This thesis analyses whether integrating real-time online

search data into a modelling approach specifically designed for such situations [Bas-

tos et al., 2019] can help nowcast chikungunya, which has so far received relatively

little attention in the nowcasting literature.

7.1 Key contributions

In Chapter 3, we analyse whether novel data sources can help provide faster statis-

tics on airline performance and aviation’s contribution to GDP. Aviation is a crucial

sector of the global economy, directly contributing at least 3% to GDP in the UK

and US. Aviation also provides critical support to other big economic sectors, such

as tourism. Current aviation statistics are published only after a two month delay.

The Covid-19 crisis has shown how volatile the aviation sector can be, with its con-

tribution to UK GDP shrinking by 97% in April 2020. Rapid estimates of aviation

statistics therefore have great value to economic policymakers.

Aircraft now broadcast their location at high frequency in real-time under

the ADS-B protocol. In Chapter 3 of this thesis, we have shown that ADS-B data

can help nowcast aviation statistics. We first construct a global dataset of flights,

covering the period July 2016 to December 2018, from the raw location data. This

data is available in real-time, and including it substantially boosts nowcast perfor-

mance of airline flight volumes, relative to a strong baseline autoregressive model.
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These improvements are large: out-of-sample nowcast errors fall by roughly 30% for

UK airlines and 20% for US airlines.

We next show that real-time knowledge of flight volumes improves nowcast

performance of aviation’s contribution to GDP, also relative to a baseline autore-

gressive model. These improvements are largest during volatile economic times,

such as the 2008 recession. Intuitively this may be unsurprising, as autoregressive

models perform worst when there are sudden shifts in the series. This is when rapid

indicators have the most value to policymakers, as decisions often need to be taken

quickly.

Flight volumes are also a key determinant of airport performance. In Chapter

4, we extend the methods from from Chapter 3 to another application of ADS-B

data: nowcasting airport performance. We further exploit the spatial dimension

of ADS-B data to estimate a takeoff and landing airport for each flight extracted

from the historic ADS-B data. We then construct an ADS-B indicator for airport

flight volumes, which is available in real-time. Including this indicator alongside

a baseline autoregressive model boosts nowcast performance for both UK and US

airport flight volumes.

Chapter 4 extends the time series of ADS-B data to April 2020, whereas

Chapter 3 ends in December 2018. We am able to build a rich historic dataset

of some 117 million flights globally, relative to the 67 million flights identified in

Chapter 3. Crucially, the data in Chapter 4 covers the start of the Covid-19 crisis,

which marked a sharp decline in air traffic in many countries. The results from

Chapter 4 show that models with ADS-B data perform particularly well during this

volatile period, which is also when faster statistics are likely to be of greatest value

to policymakers.

We build a historic dataset of some 117 million flights in Chapter 4. Both

the UK and US customs authorities currently publish granular international trade

statistics at monthly frequency. Analysts can further split these statistics by trading

partner and port of arrival, so there is a ground-truth measure of how much trade

arrives through each UK and US airport from each of their trading partners. Future

researchers could construct a matching indicator from ADS-B data: the monthly

volume of flights arriving at each airport from each trading partner. Changing flight

volumes along a given route could be a leading indicator for trade flows along that

route. Economic policymakers would find faster statistics on international trade

flows highly useful. It would enable faster responses to supply chain disruption

from external shocks, such as the Covid-19 crisis. Policymakers may also be able to

more quickly evaluate the impact of major changes in trade policy, such as Brexit,
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and respond with appropriately targeted sectoral support.

In Chapter 5, we analyse whether a novel combination of data from online

“darknet” markets and Wikipedia page views can be used to nowcast illicit drug

demand. Black markets are an important part of the economy, and they have always

difficult for economic policymakers to observe. Illicit drugs are one of the largest

black markets globally, and the market for illicit drugs is also the source of major

public health issues in most developed countries. Currently, policymakers rely on

annual surveys to monitor demand for illicit drugs. Arguably, these surveys are

too infrequent for responding to rapid changes in drug use, such as the US opioid

epidemic. Moreover new “designer” drugs may not appear in these surveys at all.

Owing to recent developments in cryptocurrencies and encrypted web brows-

ing, there are now online markets that enable anonymous trade in illicit goods. On

these “darknet” markets, buyers generally must leave feedback in order to enforce

a reputation mechanism. We show that scraping this feedback allows for collection

of transaction-level data on darknet drug purchases, which is available in real-time.

We then show this transaction-level data can build a global dataset of darknet drug

demand over time.

However, scraping the darknet is difficult, so this data is not always reliably

available. Darknet drug buyers may search online for information about the drugs

before making a purchase. These searches may lead them to Wikipedia, which has

a unique page for each drug. Wikipedia also has a different page for each major

language, which can proxy for country of origin of the searcher. Data on daily

Wikipedia page views is reliably available in real-time.

We show that data on Wikipedia page views can help nowcast darknet drug

demand across a range of drugs and countries. Augmenting a baseline panel now-

casting model with real-time Wikipedia data substantially boosts accuracy. These

improvements are large: out-of-sample nowcast errors are around 40% smaller from

the Wikipedia model relative to the baseline. These results hold across a range of

time frequencies, from weekly to quarterly. We further show that the Wikipedia-

based model has a very direct policy application: spiking page views provided ad-

vance warning of the 2016 US fentanyl epidemic, but policymakers failed to declare

a state of emergency until 2017.

Nowcasting also has a strong public health policy application through epi-

demiology. Fast and accurate statistics are crucial to monitoring the spread of

disease and responding quickly to epidemics. Chikungunya, a mosquito-born dis-

ease (arbovirus), is a growing problem in Brazil, with over 130,000 probable cases

recorded in 2019 alone. Infections often lead to severe health complications, with
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the resulting workplace absences being economically catastrophic for the low-income

households affected. There is a long and variable lag between a patient seeking treat-

ment and entry of the case into the national disease surveillance system. As a result,

case count data arrives in a gradual and inconsistent stream. This makes accurate

monitoring of chikungunya prevalence particularly difficult, reducing policymakers’

ability to respond effectively to fast-growing epidemics.

Data on online searches for chikungunya-related terms, from Google Trends,

is reliably available in real-time. In Chapter 6, we analyse whether Google Trends

data can improve nowcasts of chikungunya prevalence in Rio de Janeiro. We begin

with a Bayesian baseline model [Bastos et al., 2019] designed explicitly for dealing

with disease data that arrives gradually and inconsistently. This baseline model

far outperforms a “heuristic approach” of estimating based solely on cases already

entered into the system. We find that augmenting the baseline with Google Trends

data further boosts both model accuracy and precision, which would allow policy-

makers to be more confident in their estimates of chikungunya prevalence. Moreover,

these improvements are largest during epidemics, and particularly at the onset of

the epidemic. These are the most crucial periods for policymakers seeking to combat

the spread of disease to have fast and accurate statistics.

Importantly, our model in Chapter 6 is operationally usable in situations

where data arrives with long and varied delays. This contrasts with traditional

nowcasting approaches, which require regular and complete data on previous periods

at the time of nowcasting the current period in order to be operationally usable.

This is often not the case with epidemiology data, as documented by Mizzi et al.

[2021] for dengue fever and further reinforced by the current Covid-19 crisis.

7.2 Key limitations

The main limitation of our results from Chapter 3 is the short time series of the

ADS-B data. We found evidence that ADS-B data could nowcast GDP in-sample,

but the time series was too short for a more rigorous out-of-sample analysis. In-

stead, we substituted the ADS-B estimate of aggregate flight volumes in the GDP

nowcast for the official estimate of flight volumes, which we showed that ADS-B

data could accurately nowcast out-of-sample. Future research will have access to

a longer time series of ADS-B data, and should build on our results by rigorously

analysing whether ADS-B data can nowcast aviation’s contribution to GDP out-of-

sample. Moreover, future research will have access to data from the Covid-19 crisis.

This will provide an excellent case study of whether ADS-B data is useful during a
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crisis that hit aviation particularly hard.

There are also some limitations on the generalisability of our results to sectors

other than aviation. Aviation is a significant fraction of GDP in most developed

countries, but policymakers would benefit from rapid estimates of other sectors

too. Future research could extend the methods in this thesis for analysing aircraft

location data to real-time location data from other transport sectors, such as road

and shipping.

Lack of geographic coverage limits the generalisability of results from Chapter

4, similarly to Chapter 3. Our results were geographically restricted to the UK and

USA. A useful next step would be to check whether these results hold in other

regions with good ADS-B coverage, such as mainland Europe. Some countries that

are crucial to supply chains and the international trade network, notably China, have

very poor ADS-B coverage. It would be particularly useful for future researchers

to focus on these regions as the geographic coverage of ADS-B data continues to

improve.

Poor ADS-B coverage in one country can negatively impact the accuracy of

flight volume estimates for its partners. For example: a researcher attempting to

nowcast imports of Chinese goods to UK airports may have good ADS-B coverage

around UK airports, but poor coverage around Chinese airports. Therefore they

cannot reliably identify that planes arriving at UK airports came from China. Future

studies could attempt to infer takeoff and landing locations of flights where one side

comes from an area of poor ADS-B coverage.

The primary limit of our results from Chapter 5 is the external validity

of extrapolating darknet drug demand to the wider population. Despite growing

popularity, darknet drug demand is only a small percentage of overall drug demand.

Policymakers are likely to be more interested in overall drug demand, particularly

when tracking epidemics. Official statistics on drug use from annual surveys are very

low frequency, so there is not a sufficiently long enough time series to directly assess

out-of-sample predictive power of data from Wikipedia page views. We instead

rely on previous demographic research showing that darknet demand should proxy

well for overall drug demand, at least in developed countries. As higher frequency

official data on wider drug demand becomes available, future researchers should test

directly whether real-time data on Wikipedia page views or darknet transactions can

improve nowcast accuracy.

Another limitation comes from proxying the location of the viewer of a

Wikipedia page from the page language. This proxy varies in precision. A person

viewing a Dutch language Wikipedia page is more likely to be located in the Nether-
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lands than elsewhere. However, determining the location of an English language

page-viewer is much harder. They could be from several countries in our dataset.

There is indeed some evidence that model performance is worse for countries that

are less likely to have a precise mapping, such as the UK, US and Australia, than

countries with a more precise mapping, such as the Netherlands. Future research

could include other sources of online search data, such as Google Trends, which offer

more precision regarding the location of the person searching for information.

Data on both darknet drug demand and Wikipedia page views is available

at daily frequency, so in principle we could perform the analysis at any frequency

up to daily frequency. While including Wikipedia data improved model accuracy

at all frequencies up to weekly frequency, the Wikipedia model performed relatively

better at lower frequencies. For example, we found Wikipedia data boosted model

accuracy more at monthly frequency than weekly. There may therefore be a trade-

off between model speed and model accuracy. Faster models are more useful for

policymakers, so future research could explore this trade-off in more detail to decide

on the optimal frequency of modelling for responding to fast-changing patterns of

drug use.

The analysis in Chapter 6 is geographically limited to Rio de Janeiro. It is

possible that our results may not generalise as well to other regions. For example,

if they have a different relationship to the internet then Google Trends may be a

less reliable indicator. Future research should investigate the external validity of

our results to other regions, such as other Brazilian cities, as in Chapter 8 of Mizzi

[2019], or other chikungunya-prone countries, such as India.

The real-time data we included in Chapter 6 was restricted to Google Trends,

which was easy to collect for Rio de Janeiro through the Google Health Trends API.

However, the Bayesian modelling framework we used could include more sources

of real-time data. Future research could include a much broader set of real-time

indicators to further improve nowcast performance. These could be other sources

of online data, such as Twitter, or other real-time data already known to affect

arbovirus transmission, such as weather data.

In Chapter 6, we analyse chikungunya nowcasting independently of other

arboviruses, such as dengue fever. These diseases both share transmission vectors

(they are both borne by mosquitoes) and symptoms, which means misdiagnosis is

frequently an issue. Through a similar disease monitoring system, data on dengue

prevalence is also available in Brazil. Future research may therefore benefit from

jointly modelling these diseases when nowcasting their prevalence.

While the novel data sources in this thesis show much promise, we urge
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caution in integrating them into the production of official statistics. We emphasise

that novel data augments existing data collection, rather than replacing it entirely.

We deploy a consistent approach in each chapter of including novel data alongside a

baseline model based on existing data collection methods, rather than a model that

omits existing data entirely. Indeed, removing existing methods entirely may make

nowcast performance worse. By definition, these novel data sources have only been

available for a relatively short amount of time compared to traditional data sources.

Therefore we generally need a longer time series before we can fully evaluate their

efficacy, and determine whether statistics authorities can move on from existing

methods.

Another general point of caution is that none of our nowcasting methods

represent causal relationships. In each chapter, we claim that novel data sources

can help with measurement of official variables, but they cannot provide a policy

prescription for affecting the variables that they help to measure. For example, in

Chapter 5 we provide evidence that rising numbers of Wikipedia page views for a

certain drug may indicate rising demand. If a policymaker were to interpret these

results causally, they may conclude that the way to reduce illicit drug demand is to

ban Wikipedia pages for those drugs. We are therefore careful to steer clear of any

claims of causality in our results, which are limited to helping only with measuring

outcomes.

7.3 Future work

There are many avenues for future researchers to build on our results. In doing so,

we hope that it will be possible to use nowcasting methodologies and more novel

data sources to deliver faster socioeconomic statistics across a range of domains.

Chapter 3 showed that ADS-B data could improve estimates of aviation’s

contribution to GDP. Future researchers could extend our results by analysing this

relationship during the Covid-19 crisis. While we highlight that ADS-B data is

most useful during volatile economic times, the data used in Chapter 3 ends before

2020. Similarly, researchers could apply our methodology to real-time data from

other methods of transport such as shipping, road and rail. In this way, they

could nowcast the contribution to GDP from other sectors. We could then develop

similar nowcasting methods for other maroeconomic variables, such as inflation and

unemployment, to build a more complete, real-time picture of the economy.

Chapter 4 analysed how ADS-B data could help nowcast airport performance.

In doing so, we built a global, real-time dataset of the international flight network.
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Future research could use such a dataset to assess whether ADS-B data can help

nowcast international trade flows. Authorities collect granular data on the volume

of trade going through each airport on a monthly basis. The ADS-B data can

match this granularity, and may be a helpful leading indicator for changes in trade

dynamics.

Chapter 5 explored the potential for real-time data from darknet drug mar-

kets and Wikipedia page views to improve the speed of statistics on drug demand,

which are currently released at an annual frequency. To complement this use of data

from the online world, future research could also incorporate higher frequency data

on drug demand from the physical world, such as drug seizures. In turn, this would

strengthen the case of using darknet data to nowcast overall drug demand, rather

than the subset of demand on the darknet markets.

Chapter 6 showed how real-time data from Google Trends could improve

the accuracy and precision of real-time estimates of chikungunya in Rio de Janeiro,

Brazil. Future research could build on these results in several ways. Researchers

could incorporate other real-time sources of data that affect the spread of mosquito-

borne disease, such as data on humidity. Our methods could also be extended to

other regions, although researchers should take care to consider differences in de-

mography if they broaden the geographic scope of analysis. Lastly, as incremental

delivery of case data is frequently observed across many disease surveillance scenar-

ios, our methods could be used to nowcast the spread of other diseases such as Zika,

or even Covid-19.

7.4 Policy implications

In this thesis, we have demonstrated the value of multiple novel data sources in

nowcasting official statistics. These findings cover a wide variety of statistics, ranging

from UK GDP to global drug demand and chikungunya incidence in Rio de Janeiro.

These findings should help policymakers monitor statistics that are prone to rapid

change, thereby responding more quickly to emerging crises such as recessions and

pandemics.

Chapter 3 shows that there is great potential for using real-time ADS-B in

nowcasting airline performance and aviation’s contribution to GDP. These methods

could be extended to real-time location data from sectors beyond aviation, such as

road and shipping. Nowcasting GDP from an increasing number of sectors may

allow for policymakers to have an accurate, real-time estimate of overall GDP in the

future.

111



Chapter 4 shows that ADS-B data is already a useful indicator for nowcast-

ing airport flight volumes. This indicator is particularly strong during periods of

volatility, such as the Covid-19 crisis, when faster statistics are likely to be most

valuable to policymakers. Policymakers may therefore benefit greatly in future from

ADS-B data as a novel indicator for global measures of economic activity, such as

international trade.

Chapter 5 marks the first, to our knowledge, use of darknet or Wikipedia

data for nowcasting drug demand. While we only directly analyse demand from

online “darknet” markets, we provide evidence that our model could help to nowcast

demand from traditional drug markets too. There is a clear policy application in

public health for combatting fast-growing drug epidemics, such as the Fentanyl

epidemic in the USA. Our results show great potential for this novel data source,

and in Section 7.2, we outline several concrete avenues for future researchers using

online data to build on our results.

Chapter 6 provides further evidence for the value of online data in nowcasting

for epidemiology. It is the first study to nowcast chikungunya in a robust framework

where reporting delays are properly accounted for and models are evaluated out-of-

sample. As well as suggesting concrete avenues for future research to build upon

our results, the methodology deployed could be extended to other diseases with

inconsistent reporting, such as Covid-19.

Policymakers are now considering integrating novel data sources into their

socieconomic statistics across a range of domains. In their May 2020 Monetary

Policy Report, the Bank of England drew on high frequency ADS-B data to illustrate

the rapid decline in air traffic at the start of the Covid crisis [Monetary Policy

Committee, 2020]. The UK’s Office for National Statistics (ONS) recently launched

a “faster indicators” initiative, which considers the case for drawing on real-time

data from a range of sources to create economic indicators [Nolan, 2019]. In Brazil,

the Bastos et al. [2019] methodology that is built upon in Chapter 6 of this thesis

is now used to deliver weekly reports of dengue incidence to more than 5,000 local

authorities across the entire country.

We conclude that researchers should continue to search for novel, real-time

data sources. However, given their novelty, these should be integrated gradually to

improve the production of official statistics. Moreover, while helping with measure-

ment, they do not provide an understanding of the causal processes underlying the

statistics they help to estimate. These limitations suggested that novel data sources

should be considered a complement to existing methods rather than a replacement.

Nevertheless, if they are tested rigorously and integrated cautiously, then novel data
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sources represent a promising path towards improving the speed and accuracy of

official statistics.
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Sharad Goel, Jake M. Hofman, Sébastien Lahaie, David M. Pennock, and Dun-

can J. Watts. Predicting consumer behavior with Web search. Proceedings of the

National Academy of Sciences, 107(41):17486–17490, 2010.
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