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Abstract

House prices are a key economic indicator. However, there is usually a delay
of two months between the sale of a house and the availability of price data through
the Land Registry. Over the past decade, vast quantities of imagery of streets and
neighbourhoods have become available online, and the speed at which such imagery is
being updated is growing. Simultaneously, advances in deep learning have enhanced
our ability to determine the contents of an image automatically. In this thesis, we
therefore ask: can we use deep learning to automatically infer house prices from large
volumes of photos of houses and neighbourhoods?

Focusing on London as a case study, we analyse millions of photos from
three sources, covering photographs of streets (Google Street View); crowdsourced
photographs of outdoor neighbourhood locations (Geograph); and marketing images
of house exteriors and interiors (Zoopla). For each image, we use a convolutional
neural network to extract data on the presence of visual features. We investigate
whether these features can be used in conjunction with an elastic net regression model
to estimate the median house price during 2015 and 2016 for London neighbourhoods.

Our results demonstrate that it is possible to automatically infer local house
prices from all three sources of imagery. The best estimates are made using Zoopla
photographs. This may be due to the larger number of Zoopla images available in our
sample (3,727,890 photographs, compared to 519,295 images for Google Street View
and 273,999 images for Geograph). However, we find that increasing the number of
images available to the model by combining images from different sources has limited
benefits.

As the speed of collection of such imagery increases, this approach could
equip national and local policymakers with more timely information on house prices,
enabling them to make more informed decisions about economic policy.
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Chapter 1

Introduction

Why are house prices so relevant to society? At an individual level, shelter is vital
for a multitude of reasons such as privacy, stability, and safety. Moreover, owning
a property can increase the chance of obtaining financial security. However, the
escalating lack of affordable housing can make this a challenging endeavour. At a
governmental level, policymakers may be looking to set policies that would promote
or protect economic growth, and house prices are a key economic indicator.

Currently, it is difficult to obtain accurate and up-to-date information concern-
ing house prices in England. Not only are they constantly changing, but there often
exists a time delay of two months between a house transaction and the availability
of data on the transaction from the Land Registry. In turn, the ability to make
informed decisions based on house prices is hindered. Fortunately, alternative data
sources of relevance are now available, and the rate at which they are updated is
rising. Therefore, exploiting them to make inferences regarding house prices could
allow individuals and organisations alike to make better-informed and more timely
judgements.

Instinctively, the appearance of a property and its environment give us an
indication of its value, as well as the value of properties in the general area. The
volume of street view imagery containing these visuals is growing swiftly, with Google
Street View being a large provider of such data. Simultaneously, improvements
within the field of computer vision have paved the way for new methods that can
analyse images rapidly, and extract information about what the images themselves
contain. Therefore, in this thesis, we investigate whether we can use millions of
images of houses and their neighbourhoods in conjunction with machine learning
tools to automatically infer local house prices, as well as changes in local house prices.
The photographs we analyse consist of images from three frequently updated data
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sources: street-level imagery from Google Street View; images of local outdoor areas
from Geograph; and interior and exterior images from the property website Zoopla.
Note that the images in our dataset incorporate a natural, human perspective of
neighbourhoods and properties, rather than satellite images, for instance, which
show a bird’s eye view. This gives us the opportunity to develop models that make
inferences about neighbourhoods with the same information that humans have access
to when walking through a new area.

Researchers and practitioners that analyse house prices rarely incorporate
visual information in their models. However in this thesis, we develop a methodology
that could make it easier for them to gain useful information about house prices
from relevant image data and make use of it. This could potentially improve their
understanding of house prices. Furthermore, relevant imagery could reveal insights
into other topics in social science. As such, our methodology could be valuable for
researchers in the field of computational social science, as the methods could be
applied to other topics.

In this thesis, we start by taking an extensive look at how research has evolved
in the field of computational social science in Chapter 2. We explore literature that
focuses on the benefits of large datasets and the ways in which data science has
advanced social science. We also discuss the increase in availability of image data, as
well as the challenges surrounding the efficient collection of house price data. We
then consider improvements in the performance of specific machine learning tools
relevant to this thesis, namely convolutional neural networks and elastic net models.

In Chapter 3, we take the first step towards understanding how photos of
houses can be utilised to estimate local house prices. Focusing on London, we apply
a computer vision algorithm to street-level images of house facades from Google
Street View. The visual features that we automatically extract from the images, such
as ‘skyscraper’ and ‘fountain’, are then used to estimate median house prices for
London neighbourhoods at a small area granularity. We discover that house prices
can be estimated well from these images alone. We also identify visual features that
the model associates with higher prices and lower prices. Furthermore, we explore
whether we can capture relative changes in house prices over a decade.

Since we can successfully infer local house prices in London from Google Street
View imagery, can we also infer local house prices in London from an alternative
street-level image source? We utilise images from Geograph in Chapter 4 to answer
this question. Geograph images capture outdoor scenes but are not restricted to
the street network. They also contain images of environments such as parks and
canals. The analyses we conduct in this chapter are similar to those in Chapter 3
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but with Geograph images, rather than Google Street View images. Our findings
demonstrate that we can estimate median house prices in London neighbourhoods
reasonably well using Geograph imagery too. We also find that the more photos we
use in the models, the better the performance is. However, the models we build with
Geograph imagery do not perform as well as the models we build with Google Street
View imagery, potentially due to fewer Geograph images being available.

The fact that we can infer median house prices of London neighbourhoods
from outdoor images naturally leads us to ask whether we can estimate local house
prices from indoor images too. Therefore in Chapter 5, we analyse indoor photographs
of properties in London from Zoopla. Zoopla is a real estate website that is constantly
updated with properties that are advertised via its platform. Our results show that
we can also use Zoopla imagery to estimate local house prices in London and changes
in local house prices very well. Furthermore, we find that if we build a model that
infers house prices from both indoor and outdoor Zoopla imagery, performance only
slightly improves in comparison to a model that uses indoor imagery alone. However,
we find that using either indoor or indoor and outdoor Zoopla images delivers a
substantial improvement on the performance of models we build with Google Street
View or Geograph images, again perhaps because we analyse a much greater number
of Zoopla images.

Each of the datasets discussed thus far can therefore be used to infer higher
and lower median house prices in local areas of London. However, the nature of the
imagery differs. Furthermore, we find that we achieve varying levels of success when
estimating median house prices in London from Google Street View, Geograph, and
Zoopla images independently. Therefore, in Chapter 6, we explore what makes a
house price estimation model based on image data perform at its best. We conduct
this investigation by combining the information we extract from our data sources and
using this combined information to estimate local house prices and changes in local
house prices in London. Our findings show that performance is strongly influenced by
the inclusion of Zoopla data, regardless of whether we generate estimates of median
house prices or changes in median house prices. We also provide further evidence
suggesting that incorporating data from a larger volume of images in a house price
estimation model leads to better results up to a limit, after which the improvements
are marginal.

Our findings confirm that we can use large-scale, frequently updated image
data with deep learning techniques to estimate local house prices successfully. In
Chapter 7, we discuss our results, their consequences for policymakers, and possible
steps for future research.
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Chapter 2

Background

At the beginning of the twenty-first century, when the availability of data on the
behaviour of large groups of people skyrocketed, interest grew in carrying out social
science research using more computational approaches to solving problems. As
a result, there is now an entire sub-discipline of the social sciences dedicated to
computational social science (Conte et al., 2012; Lazer et al., 2009).

Over the past few years, the field of data science has evolved and now slightly
overlaps with computational social science, leading to a new sub-discipline of data
science known as social data science. Similarly to computational social science, social
data science involves using computational methods to understand social phenomenon,
but they differ in terms of the foundations for research. Whereas computational social
science starts with a theoretical framework to be tested with data, social data science
starts with data and data science techniques that lead to findings that inform theory.
This relatively new paradigm can be beneficial, as data can reveal information that
would not have been discovered otherwise, which could lead to the formulation of
new yet realistic theories surrounding human behaviour.

The research in this thesis follows the practical framework of social data
science. We start with data, as we have access to an abundance of them at not extra
cost, and intend to understand house prices using new sources. We then compare our
findings to what we already know to be true, as well as discovering new information.
The field of social data science is very new relative to computational social science,
so very little research has been conducted regarding social data science. Additionally,
since the two disciplines somewhat overlap, computational social science is relevant
to this thesis. We therefore review existing research in the well-established field of
computational social science in this chapter.

In particular, we focus on the insights that have been gained from sizeable
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datasets on human behaviour. Since our research explores the use of street view
imagery with deep learning tools to infer house prices, we take a closer look at research
using both online and offline data sources, with a keen focus on online image data and
offline house price data. The use of machine learning tools is vital for our research,
so we also evaluate advances in deep learning techniques for extracting information
regarding the contents of images, and relevant statistical learning techniques for using
this information to build accurate estimation models.

2.1 Computational social science

Using a computational approach to answer questions in the social sciences has led
to a wealth of knowledge that furthers understanding of human behaviours, from
modelling the relationship between attention and choice to the impact of bots on
politics (Bhavnani & Choi, 2012; Mullett & Stewart, 2016; Tesfatsion, 2002; Woolley,
2016). In particular, using computational techniques with large datasets has paved
the way for research that would not have been possible otherwise. Here, we review
research using both large online datasets, generated through our interactions with
the internet, and large offline datasets, produced through administrative processes
such as house sales.

2.1.1 Studies using online data

Massive volumes of data on human behaviour come from online platforms, whose
importance in daily life has grown considerably over the past decade. With greater
use of various platforms, a greater variety of data are generated and available for
analysis, providing insight into human behaviour in the real world (Letchford, Preis,
& Moat, 2016b; Maruf, Meshkat, Ali, & Mahmud, 2015; Moat, Preis, Olivola, Liu, &
Chater, 2014).

An example of a popular social media platform is Twitter, which is accessed
by millions of users daily (Twitter, 2022). It is a microblogging site where users
can post messages called tweets, but the messages uniquely have a character limit.
The limit was 140 up until 2017, after which it became 280. Rapidly available
Twitter data have been used for a number of applications (Bollen, Mao, & Zeng,
2011; Borge-Holthoefer, Rivero, & Moreno, 2012; De Domenico, Lima, Mougel, &
Musolesi, 2013; González-Bailón, Borge-Holthoefer, Rivero, & Moreno, 2011; Sloan &
Morgan, 2015; Takhteyev, Gruzd, & Wellman, 2012): for example, estimating crowd
size (Botta, Moat, & Preis, 2015), predicting elections based on political sentiment
(Tumasjan, Sprenger, Sandner, & Welpe, 2010), and generating quicker indicators of
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the prevalence of infectious diseases, such as dengue (Marques-Toledo et al., 2017;
Mizzi et al., 2021). Alis et al. (2015) take advantage of this novel data source and
study whether the length of these Twitter messages is different across regions of the
UK. This analysis is inspired by the discovery that the median length of Twitter
messages varies across the US (Alis & Lim, 2013), and that the median message
length is impacted by demographic grouping.

The microblogging site Sina Weibo is also a popular social media platform with
millions of active users (Weibo, 2020). Like Twitter, the messages had a character limit
of 140, but Sina Weibo removed the limit in 2016. If researching human behaviour
in China, these data can be useful, as shown by Jendryke, Balz, and Liao (2017).
They make use of the data by accumulating text messages and location details to
identify associations between Sina Weibo data and census information. For example,
they find that the messages sent by Sina Weibo users in a particular location are
not necessarily from residents, but could also be from tourists, highlighting popular
tourist spots.

An additional study by Jendryke, Balz, Mcclure, and Liao (2017) looks at
the relationship between urbanisation in Shanghai and social media messages from
Sina Weibo, concluding that social media data alone can contribute towards a more
granular analysis of urbanisation. In other words, the evolution of a rural area to an
urban area can be traced at a smaller scale using social media messages, rather than
measuring urbanisation from aggregated data only. Furthermore, Sina Weibo data
have been used to understand the relationship between air pollution and happiness
(Zheng, Wang, Sun, Zhang, & Kahn, 2019), humour reactions in crisis (Beeston et
al., 2014), and the relationship between Chinese tourist mobility and consumption
in London (Ye, Newing, & Clarke, 2020). For the latter, the activities of Chinese
tourists in London can be tracked when they ‘check in’ to places. This includes places
of consumption, such as restaurants and shops.

Another popular social media platform offering a variety of data is Facebook,
which currently has billions of monthly users (Meta, 2022). An abundance of data
are collected by the multimedia sharing platform, such as interactions between users
and their network of friends and associates. These interactions are explored by
Bakshy, Messing, and Adamic (2015), who try to understand how people interact via
social networks. By quantifying the diversity in information received by users due to
sharing, they find that individual networks play a large role in exposing content. More
specifically, they compare the political alignment of millions of individual Facebook
users with their friends network, and discover that individuals are more likely to
see information that concurs with their ideologies in their news feed, rather than
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opposing viewpoints, as the friends network often has similar alignments.
Many other research questions have been investigated with the data available

from Facebook (Bond et al., 2012; Ferrara, 2012; Shen, Brdiczka, & Liu, 2015),
including understanding the spreading of misinformation (Del Vicario et al., 2016),
providing evidence of emotional contagion outside of physical human interaction
(Kramer, Guillory, & Hancock, 2014), and predicting private and personal informa-
tion (Kosinski, Stillwell, & Graepel, 2013). The latter two studies, in particular,
inadvertently reveal the threat to user privacy on social media, as Facebook users
unintentionally reveal personal traits and are seemingly unaware of doing so. Flick
(2015) further expands on the poor ethical practices in research projects that use large
datasets by using the (Kramer et al., 2014) paper as a case study. They specifically
focus on the lack of informed consent and suggest practical recommendations for
obtaining consent ethically.

In two studies, Chetty et al. (2022a, 2022b) also explore the way in which
people interact via Facebook, and the impact of the strength of an individual’s social
network (or social capital) on their economic prospects. They define measures of
social capital in Chetty et al. (2022b) and determine the factors that lead to social
interaction between people with high socioeconomic status and people with low
socioeconomic status in Chetty et al. (2022a). Amongst other conclusions, they reveal
the importance of social capital for escaping poverty, and discover that exposure to
economically diverse individuals increases the chances of friendships to occur amongst
people with different backgrounds, which in turn increases the chances of individuals
to improve their economic status.

Similarly to social media platforms, the usage of online search engines has
risen rapidly over time and a large volume of data are generated due to the wealth
of information available at our fingertips. The most favoured search engine, by far,
is Google, with billions of searches conducted everyday (Nayak, 2019; StatCounter,
2022). They have also developed the Google Trends platform, providing public access
to data on the volume of Google searches for different keywords, phrases and topics
from 2004 onwards. All data accessible are aggregated (and hence anonymised), and
Google state that the sample used to produce the statistics is representative of all
Google searches (Google, n.d.-c).

A number of researchers have demonstrated how Google Trends data can
provide insights into human behaviour (Botta, Preis, & Moat, 2020; Caputi, Leas,
Dredze, Cohen, & Ayers, 2017; Kristoufek, Moat, & Preis, 2016; Letchford et al.,
2016b; Moat, Olivola, Chater, & Preis, 2016; Noguchi, Stewart, Olivola, Moat, &
Preis, 2014; Olivola, Moat, & Preis, 2019; Preis, Moat, Stanley, & Bishop, 2012;
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Schootman et al., 2015). For example, Choi and Varian (2012) make use of Google
Trends data to nowcast economic indicators. Nowcasting is similar to forecasting,
but specifically involves predicting the present or very near future, rather than the
distant future. This can be beneficial because information regarding the present tense
is vital for decision making in policy and business. Unfortunately, measurements
of the current state of society are frequently delayed. For example, gross domestic
product data, financial asset prices, and statistics associated with inflation are often
subject to a publication lag. Therefore, being able to nowcast such measurements
would allow for better decision-making in the present, before the official publication
of measurements.

Choi and Varian (2012) specifically build simple seasonal auto-regressive
models using time-series data regarding different topics of relevance to society and
compare them to models that also include relevant search terms related to these
topics. They can then determine whether it is possible to nowcast their chosen
measurements. One measurement they attempt to nowcast is the number of initial
claims for unemployment benefits using the Google Trends categories Jobs and
Welfare & Unemployment. They find that all of the models they build with Google
Trends terms, including this one, tend to outperform those that exclude the terms.

Another method of utilising search data is explored by Ginsberg et al. (2009),
who find that Google Trends data can be used to track influenza-like illnesses in areas
with a large population of internet users. Official data on the number of current flu
cases tends to arrive with one or two weeks’ delay, due to the time required for patients
to speak to a doctor and for the doctor to report the case to the country’s central
health authorities, such as the Centers for Disease Control and Prevention (CDC) in
the US, or the UK Health Security Agency (previously Public Health England) in the
UK. Quicker insights into the current number of flu cases are very helpful for medical
professionals, as they can help them manage the resources required to fight against a
disease that causes many deaths every year: for example, by rescheduling non-urgent
operations to free up hospital beds for flu patients. The researchers hypothesise that
users search for their symptoms as they appear and demonstrate that the popularity
of certain search terms can be used to estimate the level of influenza before official
figures on the number of influenza cases become available. The resulting approach
is known as ‘Google Flu Trends’ and was long heralded as a major success story in
computational social science.

Unfortunately, in the winter of 2012–2013, the Google Flu Trends estimate
suggested that at the peak of the US flu season, over 10% of the US population was
suffering from influenza-like illness. When the official CDC data eventually arrived,
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the true figure was closer to 6% (Butler, 2013). One hypothesis as to the source of
the error was that there was a lot of media coverage of the danger of catching flu in
that winter season, such that people had started searching for flu-related terms to
gather information about the disease without having a current flu infection.

Preis and Moat (2014) provide evidence that such problems can be overcome
by augmenting the original Google Flu Trends approach in two key ways. First, they
show how a model can be constantly recalibrated with the most recent data, so that
estimates are based on an up-to-date picture of the relationship between the volume
of flu-related searches and the true number of flu cases. Second, they observe that
recent official data on the number of flu cases are likely to provide some insight into
the current number of flu cases, and show how old, delayed data on the true number
of flu cases can be used to inform estimates alongside search volume data. They
call their approach ‘adaptive nowcasting’, as it produces estimates of the current
state of affairs whilst constantly adapting the model used to generate the estimates.
Their results demonstrate that such an approach can be used to successfully avoid
the problems witnessed in the winter of 2012–2013.

A different approach is required if official data do not arrive with a simple
delay of one or two weeks, and instead trickle in over multiple months. This is the
case for data on many infectious diseases worldwide, including the mosquito-borne
diseases dengue and chikungunya in Brazil. Mizzi et al. (2021) and Miller et al. (2022)
show how data on the volume of Google searches for the diseases can help in these
circumstances too, when coupled with a Bayesian approach for estimating how many
cases will be reported after varying lengths of delay.

Previous work has also revealed how data on Google searches can be used to
anticipate future human behaviour. For example, Preis, Moat, and Stanley (2013)
show that increases in searches for more financially-related terms on Google tend
to be followed by stock market falls. Preis and Moat (2015) show that increases in
searches for company names or company stock ticker symbols similarly tend to be
followed by falls in the price of the stock. Finally, Curme, Preis, Stanley, and Moat
(2014) present evidence that increases in searches for politically-related terms on
Google also provide early warning signs of stock market falls. Bollen et al. (2011) and
Bordino et al. (2012) also use online data to predict the stock market. The former
uses mood states identified in Twitter feeds to estimate changes in the value of the
Dow Jones Industrial Average, whereas the latter uses Yahoo! search engine query
data related to specific stocks to infer trading volumes of those stocks. Both studies
exhibit some degree of success.

A further popular source of online information due to its accessible nature
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and high frequency of updates is Wikipedia, a free online encyclopedia with millions
of articles. The metadata associated with Wikipedia articles in particular have been
useful for a number of studies (Capocci et al., 2006; Kristoufek, 2013; Mestyán,
Yasseri, & Kertész, 2013; Yasseri, Kornai, & Kertész, 2012; Yasseri, Sumi, & Kertész,
2012; Yasseri, Sumi, Rung, Kornai, & Kertész, 2012). Moat et al. (2013), for instance,
find that the number of views of certain Wikipedia pages can be used to anticipate
stock market movements that occur shortly after. Specifically, an increase in views
of pages relating to finance tends to precede falls in the stock market.

When studying human behaviour, it is also possible to collect huge volumes
of data from large groups of people who volunteer information by crowdsourcing data
online. Crowdsourced data are essentially large-scale survey and experiment data, and
can be collected and analysed in numerous ways for a range of topics (Mastrandrea,
Fournet, & Barrat, 2015; Quercia, Schifanella, & Aiello, 2014; Zhang, Li, & Hong,
2016). For example, MacKerron and Mourato (2013) develop a smartphone app
called Mappiness that asks users to report on their wellbeing twice a day and records
their location to find links between the wellbeing and environment of an individual.
They discover that their app users are substantially happier in natural outdoor areas
than urban areas. Solymosi, Bowers, and Fujiyama (2017) explore the subjective
bias involved when crowdsourcing data in relation to criminological research. They
introduce a new approach for measuring the perception of crime and safety using
crowdsourced data by extrapolating from the biases, rather than discarding them as
a limitation.

2.1.1.1 Image data

Beyond text-based online information, increasing volumes of images are now also
shared widely on the internet, offering new insights into human behaviour around
the globe. For example, the image and video hosting site Flickr has a large historic
corpus of images, with considerable metadata attached to each photo, such as tags,
comments, and location data (Flickr, n.d.; Preis, Moat, Bishop, Treleaven, & Stanley,
2013; Seresinhe, Moat, & Preis, 2018; Seresinhe, Preis, & Moat, 2016). Alanyali,
Preis, and Moat (2016) track protests using Flickr photographs that are tagged with
location data. They discover that the proportion of photos in a country tagged with
the word ‘protest’ is higher when there are greater numbers of reports of protests in
that country in the newspaper The Guardian. This highlights the potential for using
image metadata as a rapid measurement of human behaviour.

An alternative use of location data from Flickr photographs is illustrated
by Barchiesi, Preis, Bishop, and Moat (2015). They devise an algorithm to infer
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the probability that someone is in a certain location, as well as the probability
of movement between two locations. Their results show that estimates from their
algorithm match up with official UK figures on travel flows. Barchiesi, Moat, Alis,
Bishop, and Preis (2015) demonstrate that data on the location of Flickr photographs
can be used to estimate the annual number of visitors to the UK from countries
around the world, and Preis, Botta, and Moat (2020) show that this approach can
be extended to all G7 countries. In a similar vein, Wood, Guerry, Silver, and Lacayo
(2013) test whether Flickr metadata can be used to quantify the popularity of nature
attractions. They find that their estimates are comparable to official survey data on
the number of visits to nature parks around the world.

Instagram is a another popular social media platform with a focus on pho-
tographs, and regularly attracts millions of users (Rodriguez, 2021). A number of
researchers have demonstrated how data associated with Instagram photographs
can provide insight into behaviour in the real world (Hassanpour, Tomita, DeLise,
Crosier, & Marsch, 2018; Hausmann et al., 2017; Heikinheimo et al., 2017; Paül i
Agustí, 2021; Rossi, Boscaro, & Torsello, 2018; Tenkanen et al., 2017; Trevisan et
al., 2019). For example, Ferwerda, Schedl, and Tkalcic (2016) show that they are
able to infer personality traits from features identified in Instagram photos. Botta,
Moat, and Preis (2020) illustrate how data from Instagram photos can be used to
estimate the size of a crowd. Le Moignan, Lawson, Rowland, Mahoney, and Briggs
(2017) explore how Instagram has changed the concept of ‘family snapshots’.

Other sources of online imagery, such as the crowdsourcing project Geograph
(Geograph, n.d.-a), seek to capture the appearance of the outdoor environment.
Seresinhe, Preis, and Moat (2015) draw on hundreds of thousands of Geograph
images to demonstrate that people who live in more scenic environments report
their health to be better, even when considering the amount of local greenspace,
socioeconomic metrics and data on pollution. Their analyses use scenic ratings from
the online game Scenic-or-Not (Data Science Lab, n.d.), which has gathered over 1.5
million votes on Geograph photos of over 200,000 locations across Great Britain. By
combining Scenic-or-Not data with three years of happiness data from over 15,000
people from the mobile app Mappiness, Seresinhe, Preis, MacKerron, and Moat
(2019) also demonstrate that people in more scenic locations report themselves to be
happier, even in cities. Using deep learning tools, Seresinhe, Preis, and Moat (2017)
show that scenic locations are not just green and natural locations: buildings with
character can boost the value of a scene too. McKenna et al. (2021) also use data
from Scenic-or-Not to investigate the impact on British onshore wind energy capacity
and cost if wind farms are not permitted in the most scenic locations.
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A further source of image data on the outdoor environment is Google Street
View (Google, n.d.-d). Street View is a collection of images from all across the
world depicting outdoor spaces, collected by Google and their contributors. Google
originally collected images at a satellite level only with Google Maps (Reid, 2020), but
like Geograph, Street View takes this one step further and introduces a more human
perspective to the data collected. Vandeviver (2014) exploits this vast data source and
explores how online mapping applications can be useful for criminological research.
Further studies also use Google Street View data to improve our understanding of
neighbourhoods, from identifying accessibility issues on the streets to determining
whether safer-looking neighbourhoods are more lively (De Nadai et al., 2016; Doersch,
Singh, Gupta, Sivic, & Efros, 2012; Griew et al., 2013; Hara, Le, & Froehlich, 2013;
Odgers, Caspi, Bates, Sampson, & Moffitt, 2012; Rundle, Bader, Richards, Neckerman,
& Teitler, 2011). For example, Arietta, Efros, Ramamoorthi, and Agrawala (2014)
provide an initial assessment of whether Google Street View data can be used to
automatically infer relationships between the visuals of US neighbourhoods and their
non-visual characteristics, such as crime statistics and house prices.

The examples we have discussed here only cover a small number of the various
different kinds of image data available for analysis, from images of animals to brain
scans. Furthermore, the quantity of images available is rapidly increasing and a
large amount of visual information exists to be exploited. This presents a huge
opportunity in relation to housing because visual information can be quite indicative
of house prices in a given area, and forms the first step in the practical framework
we implement.

2.1.1.2 Issues with online data

Throughout this section, we have demonstrated that online data can be very useful
for understanding human behaviour and furthering research in the social sciences.
However, no data concerning humans and their environments can ever be perfect,
since humans themselves are subjective creatures. Issues can occur when using online
data, from accessing it to drawing conclusions from it. We therefore need to be aware
of the disadvantages of using online data in order to accurately interpret results based
on it.

Specifically in the field of social science, surveys are commonly used to gain
information about individuals, and online surveys can be a more cost-effective and less
time-consuming way of gathering information relative to in-person surveys. Lefever,
Dal, and Matthíasdóttir (2007) and Duffy, Smith, Terhanian, and Bremer (2005)
discuss the use of online survey data, including the disadvantages. For example, online
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surveys can be easier to complete and can be more transparent. This could allow
participants to see the results as they are updated, and manipulate their answers
to change the results. In turn, the results of the survey may not be reliable. It is
important to access data from trustworthy sources and be aware of how reliable a
data source is.

Privacy and ethical concerns should also be considered when using online
data. Israel (2015) discuss ethical approaches that can be taken in social science
that also maintain privacy, for example, informed consent. Since online data often
contain personal information about people, those involved should be informed of
how their data are being used, allowing them to choose what they are comfortable
with sharing. If privacy and ethical concerns are ignored, data could potentially be
misused. Kröger, Miceli, and Müller (2021) outline numerous ways in which data can
be used against people, such as blackmail or social media burglary, which is when
information about someone’s whereabouts is exploited to break into their home.

Additionally, online data can be biased for many reasons, including the
contents of the data and the methodology used to collect it. Therefore, when drawing
conclusions based on online data, it is crucial that biases are taken into consideration.
Mehrabi, Morstatter, Saxena, Lerman, and Galstyan (2022) conduct a survey of
the many types of biases that could occur in machine learning algorithms and data,
including population bias and behavioural bias. Population bias occurs when a sample
of data does not accurately represent the population being studied, an example of
which would be surveying males about female health. Behavioural bias occurs when
user behaviour differs between data sources, an example of which would be using
emojis on Facebook but not Instagram. In the case of online surveys, one type of
bias that could occur is order bias, which means that the order of the questions
influences a participants’ responses. Some of the ways in which this bias could be
reduced include randomising questions and grouping survey items based on topic.

Some issues with online data are issues that occur with all data in general.
If the volume of data available is insufficient, it will be difficult to draw accurate
conclusions from them. Interpretation would also be hindered if the quality of data
is poor, for instance, if a large image data source consisted of pixelated or blurry
imagery, it would be difficult to extract useful information from it. Furthermore,
messy datasets, such as those containing duplicate entries or missing values, could
reduce the volume of information available to use for analysis, and introduce biases
in the dataset.

In this section, we briefly discuss a few common issues surrounding online
data, but many more exist. Provided that a user of online data is aware of the

13



limitations of their data, online data can be very useful for research, whether it is
within the field of social science or not.

2.1.2 Studies using other data sources

A large number of studies have focused on data that captures human behaviour at
large-scale, but is not solely generated by online services or our use of the internet. A
rich source of data on the border between online and offline data sources comes from
mobile phone companies, who collect usage data from their customers (Barlacchi et
al., 2015; Blondel, Decuyper, & Krings, 2015; Deville et al., 2014; Douglass, Meyer,
Ram, Rideout, & Song, 2015; González, Hidalgo, & Barabási, 2008; Krings, Calabrese,
Ratti, & Blondel, 2009). Cheng, Fang, Hong, and Yang (2017) discuss the type
of data collected, including GPS monitoring and call transmissions, and potential
applications of the data. For example, the time and location information of a user
could contribute towards relevant recommendations at that point in time. Mobile
phone data could also enhance traffic monitoring procedures and improve congestion
(Steenbruggen, Tranos, & Nijkamp, 2015), as well as help estimate crowd size (Botta,
Moat, & Preis, 2015).

Stock market and financial data are also widely accessible for analysis (Dis-
tinguin, Rous, & Tarazi, 2006; Münnix et al., 2012; Preis, Kenett, Stanley, Helbing,
& Ben-Jacob, 2012; Preis, Schneider, & Stanley, 2011; Sornette, Woodard, & Zhou,
2009). For instance, Botta, Moat, Stanley, and Preis (2015) quantify the probability
of large price changes in stock markets. They discover that the tails of the return
distributions obey a power law for time scales ranging from 300 seconds to 3600
seconds.

As well as data on online information gathering, large-scale data on stories
in the news have been shown to provide insights into stock market moves, perhaps
reflecting how traders rely on news developments to make trading decisions (Atkins,
Niranjan, & Gerding, 2018; Curme, Stanley, & Vodenska, 2015; Hagenau, Liebmann,
& Neumann, 2013; Narayan & Bannigidadmath, 2017; Piškorec et al., 2014; Souma,
Vodenska, & Aoyama, 2019; Tetlock, 2010). Using six years of data on stories
published in the Financial Times, Alanyali, Moat, and Preis (2013) find that on days
on which a company is mentioned more frequently in the news, transaction volume
for that company’s stock increases both the day before and on the same day. Curme,
Zhuo, Moat, and Preis (2017) find that a measure of the diversity of stories covered
by the Financial Times can improve forecasts of trading volume. They also report
that stock market falls tend to be followed by the news focusing in on a smaller
number of topics.
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Other researchers have focused on the volumes of data produced by our
everyday travels (Manley, Zhong, & Batty, 2016; O’Brien, Cheshire, & Batty, 2014;
Sulis & Manley, 2018; Zhong, Arisona, Huang, Batty, & Schmitt, 2014; Zhong,
Manley, Müller Arisona, Batty, & Schmitt, 2015). For example, Miller, Moat, and
Preis (2020) demonstrate that billions of real-time messages on the location of
aeroplanes undertaking millions of flights can help generate quicker estimates of
elements of GDP. Additionally, Goddard (1970) conducted a study that uses taxi flow
data from 1962 to extract functional regions of Central London, where a functional
region refers to an area in London where taxis are frequently used. However, due
to technological limitations, the analysis was relatively small. Therefore, Demšar,
Reades, Manley, and Batty (2018) attempt to replicate the study using modern
technology and a modern taxi flow dataset from 2011 and conduct a comparable
analysis. Their initial goal was to gain insights into the temporal changes in structure
in the city centre, but they were unable to fully replicate the study. Therefore, they
extract functional regions using a slightly different method and reflect on the issues
surrounding the replication of the study. From their analysis, they are able to make
some meaningful comparisons between the original and replicated studies, such as
learning about the monetary impact of pre-booking taxis in 2011, which was not
possible when making taxi journeys in 1962.

Many studies have explored the use of large crime datasets to understand
criminal behaviour and its after-effects on society (Bowers, Johnson, & Pease, 2004;
N. Johnson et al., 2011; N. F. Johnson et al., 2016; Mohler, Short, Brantingham,
Schoenberg, & Tita, 2011; Skarlatidou, Ludwig, Solymosi, & Bradford, 2021; Solymosi,
Bowers, & Fujiyama, 2015; Solymosi, Cella, & Newton, 2017). For instance, Davies
and Johnson (2014) hypothesise that streets with a higher potential for usage have a
higher risk of burglary. Note that potential usage refers to how likely a street is to be
used by pedestrians, and the street could be used more because of its close proximity
to a train station or it leads to a shopping centre, for example. Davies and Johnson
(2014) use crime data from the city of Birmingham in England, in addition to street
network data from the Ordnance Survey, to test and provide evidence in favour of
their hypothesis. Solymosi, Ashby, Cohen, and Sidebottom (2017) explore the use of
open data to estimate the risk of violent crime on the London Underground. Open
data refers to data that can be used and redistributed freely by anyone, possibly
subject to an attribution. Trendl, Stewart, and Mullett (2021) use 10 years’ worth of
crime and incidence data from West Midlands Police and historical sports data to
investigate the link between football, alcohol, and domestic abuse in England. Their
key finding is that a victory for England leads to an increase in the reported number
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of domestic abuse incidents that involve alcohol.
Computational social science research has also had a strong focus on health,

drawing on official health data, transport data, and more (Chinazzi et al., 2020;
Colizza, Barrat, Barthélemy, & Vespignani, 2006; Eetemadi et al., 2020; Grunerbl et
al., 2015; Kraemer et al., 2020; Pavel, Jimison, Korhonen, Gordon, & Saranummi,
2015). Colizza, Barrat, Barthelemy, Valleron, and Vespignani (2007) model the
spread of the avian influenza virus at a global scale, and compare various strategies
for containment of the virus. They use data on worldwide air travel and census data
from urban areas near airports for their investigation, and are able to determine the
impact of different levels of antiviral drug usage on containing and mitigating the
spread of viruses with varying reproductive rates.

Scientists have also turned the microscope of computational social science on
themselves, and considered the volumes of data produced through scientific publishing
(Fortunato et al., 2018; Frenken, Hardeman, & Hoekman, 2009; Mingers & Leydesdorff,
2015; Penner, Pan, Petersen, Kaski, & Fortunato, 2013; Petersen, Riccaboni, Stanley,
& Pammolli, 2012; Radicchi, Fortunato, & Castellano, 2008; Radicchi, Fortunato,
Markines, & Vespignani, 2009). Letchford, Moat, and Preis (2015) show that journals
that publish papers with shorter titles receive more citations per paper. Similarly,
Letchford, Preis, and Moat (2016a) demonstrate that papers with abstracts that
contain more frequently used words receive more citations.

2.1.2.1 House price data

Of most relevance to this thesis amongst offline data, many researchers have carried
out extensive analyses using house price datasets. Shelter is a basic human need,
which is why data on house prices are so important both to individuals and policy
makers. Unfortunately, there is often a time lag between the sale of a house and
the availability of the transaction data, meaning that decision-makers are left with
out-of-date data.

In the UK, the HM Land Registry is the official source for land and property
data (HM Land Registry, 2016). They collect house price data as properties are
registered, but there is typically a delay of two months between the purchase of a
house and its registration. The data collected are then shared with the Office for
National Statistics (ONS), who use it to conduct analyses and calculate national
statistics (HM Land Registry, 2020). Researchers have taken advantage of this
resource to attempt to both predict and better understand influences on house prices
in the UK for some time (Badarinza & Ramadorai, 2018; Begiazi & Katsiampa,
2019; Brown, Song, & McGillivray, 1997; Cook, 2005; Feng & Jones, 2015; Pain &
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Westaway, 1997). For instance, Yao and Fotheringham (2016) use a mixed modelling
approach that considers the impact of both spatial and temporal components on
house prices in Fife, Scotland.

Over in the United States, the methodology of house price data collection
is not as straight forward because there is no official publicly available dataset of
house prices. Despite the absence of a publicly available dataset of all house prices in
the US, numerous housing-related data sources are publicly available for analysis, as
discussed by Weinberg (2014). However, the data often come from surveys conducted
by the United States Census Bureau (Weinberg, 2014). A particularly useful dataset
is available from the Federal Housing Finance Agency (FHFA), who have a complete
collection of open access house price indices with data from all of the states in the
US (FHFA, n.d.).

Many researchers have used these data regarding house price indices to further
understand measurements relating to house prices, such as changes in house prices,
as well as house prices themselves (Bogin & Doerner, 2019; Bourassa, Hoesli, &
Oikarinen, 2016; Brady, 2014; Kim & Rous, 2012). One such example is given by
Doerner and Leventis (2013), who analyse the effects of distressed sales on house
price changes over several years. In this instance, distressed sales refer to property
transactions that must occur quickly, and these properties are often sold below market
value. Sellers may accept this financial loss for a number of reasons, including urgent
debts or divorce.

In general, there is a wealth of literature surrounding the impact of different
variables on house prices and they often use a hedonic modelling approach (Gibbons,
2004, 2015; Gibbons, Heblich, Lho, & Timmins, 2016; Gibbons & Machin, 2003;
Gibbons, Peng, & Tang, 2021; Higgins, Rezaei, & Wood, 2019; Morancho, 2003).
Gibbons and Machin (2005) explore the effects of distance from stations in London
on house valuations, whereas Sims, Dent, and Oskrochi (2008) model the impact of
wind farms on house prices around a wind farm in Cornwall. Furthermore, Sirmans,
MacDonald, Macpherson, and Zietz (2006) study housing characteristics, including
the number of bedrooms and whether there exists air conditioning, that frequently
appear in hedonic pricing models for single-family housing. They determine whether
their importance varies based on external factors, including geographical location
and model specification, i.e. the number of variables included in the model.

House price data and related statistics are often published with a delay, so
it could be useful to nowcast house prices, especially since house prices are a key
economic indicator. As mentioned previously, nowcasting could improve decision
making in policy and business. Online data may be suitable for this purpose, as
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many online data sources are frequently updated and may be able to indicate house
prices movements in advance of publication. Indeed, online data have previously
been used to successfully nowcast house prices and housing-related measures, such
as house price indices, across the globe (Askitas, 2016; Mitra, Sanyal, & Choudhuri,
2017; Oestmann & Bennöhr, 2015; Widgrén, 2016).

A key study on this topic was carried out by McLaren and Shanbhogue (2011),
who use internet search data to nowcast house prices in the UK. More specifically,
they consider generic search terms related to house prices, such as ‘estate agents’
and ‘mortgage’, and use the corresponding Google Trends search volumes to detect
relationships between the search volumes and monthly house price growth. They
provide evidence suggesting that utilising the information available from online search
data can help generate quicker indicators of house price growth.

House price data is generally not as easy to access for researchers as image
data is, but there still exists an enormous amount of accurate house price data for
the UK. Traditional models estimating house prices often include variables that are
known to be relevant and associated with housing, indicating that the models tend
to be based on theories. However, we are looking to gain new insights about house
prices in this thesis, and do not know what these insights will be in advance.

2.1.3 Summary

In this section, we examine key literature in the field of computational social science
that involve using large volumes of data to understand human behaviour. In particular,
we focus on studies that use online data from sources such as Google Trends and
Twitter, and studies that use offline data sources such as data from the stock market
and data on crime. Since this thesis focuses on the use of street view imagery to
infer house prices, we also take a closer look at research that analyses image data
and house price data, whilst also considering the issues that could occur when using
online data.

While plenty of interesting work has been done with both image data and house
price data, very few house price models currently consider the visual environment in
which a house is situated. Traditionally, incorporating image-based information in a
computational model has been challenging, due to the complexity of such data. In
the next section, we explore machine learning techniques for extracting information
from images and investigating how it relates to house prices.
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2.2 Computational methods for image analysis

In recent years, advances in technology have paved the way for novel methods,
known as machine learning techniques, that are especially useful when working with
large datasets. Well-known machine learning techniques include topic modelling,
hierarchical clustering, and random forest regression. In this section, we focus on the
machine learning techniques that are particularly helpful for our research. To make
use of huge amounts of image data for our analyses, we need to use techniques that
are able to extract useful information from the images in order to investigate the
relationship between them and house prices. To model this relationship, we further
need to use a method that is capable of handling a large quantity of variables without
sacrificing accuracy. Therefore, we review research associated with convolutional
neural networks and elastic net models.

2.2.1 Convolutional neural networks

Convolutional neural networks are machine learning algorithms that have transformed
our ability to extract information from images. However, to understand how convo-
lutional neural networks operate and why they are favoured for image recognition
tasks, we must first discuss neural networks.

In machine learning, neural networks refer to a series of algorithms that
work together to learn patterns and classify data (Anthony & Bartlett, 1999; Hagan,
Demuth, Beale, & De Jesús, 2014; LeCun, Bengio, & Hinton, 2015). The idea of neural
networks was first introduced by McCulloch and Pitts (1943), who characterised
neural activity in the brain as logical expressions that follow set conditions. Hebb
(1949) built upon this idea, suggesting that as neural activity grows, neural pathways
strengthen and information can be learned.

A neural network consists of layers, where each layer is a collection of nodes.
The layers are stacked one after the other, and the nodes from one layer are connected
to nodes of its nearby layers. The selection of nodes, layers, and connections is called
the architecture of the neural network. An example architecture is visually depicted
in Fig. 2.1. The circles represent nodes and the arrows represent connections between
nodes. The network contains an input layer, an output layer, and two hidden layers.
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Figure 2.1: A visual depiction of a neural network. The circles represent
nodes and the arrows represent connections between nodes. This example network
contains an input layer, an output layer and two hidden layers. Each layer is fully
connected to the subsequent layer.

There are many types of neural networks with varying architectures and
different applications, but for the purpose of this discussion, we will focus on a simple
feedforward neural network, as depicted in Fig. 2.1. Feedforward refers to the fact
that the information only flows in one direction, rather than forwards and backwards
between layers. To train such a neural network using a standard algorithm called
backpropagation (Rumelhart, Hinton, & Williams, 1986), pre-classified training data
are required, and at a minimum, the network needs an input layer and an output
layer. The nodes of the input layer represent the variables from the training data, and
the nodes of the output layer represent the classifications of the data. Between these
layers can be any number of hidden layers, nodes, and connections, and different
architectures are implemented for different classification tasks. This type of network
connects each subsequent layer, so for each layer, the output from the current layer is
input to the subsequent layer. Furthermore, the connections between nodes from the
current layer to the subsequent layer are weighted. For each node n in the subsequent
layer, a function of the weights and nodes from the current layer connected to n
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determines the value of n.
A neural network often aims to solve the optimisation problem of minimising

a selected loss function, where the loss function measures how well the algorithm
performs. If the errors between the values of the observed dependent variable and
the values estimated by the model are large, then the loss function would also output
a large value. Therefore, a neural network often aims to reduce these errors based on
the output from the loss function. In our example, the classification from the neural
network is compared to the observed classification of the data at the final layer of
the neural network, and the learning process known as backpropagation is applied
to improve the classification. Specifically, the neural network works backwards to
automatically adjust each weight and then tries to classify the training data once
more. It continues this process until the loss function is minimised, and the final
output from the network represents the final classifications. Once the neural network
is trained and the weights are fixed, it can be deployed on unseen and unclassified
datasets to obtain estimates of classifications of the data.

Configuring the architecture of a neural network in a specific style can con-
siderably improve the performance on different tasks. As such, there are several
types of neural networks (Alzubaidi et al., 2021; Liu et al., 2017; Sharkawy, 2020;
Wilamowski, 2009). One type is the convolutional neural network (CNN), which
has led to substantial improvements in image processing. Prior to CNNs, image
processing would involve using algorithms to detect distinct shapes and patterns,
or using image matching techniques that compare the pixels of a target image to
the pixels of images whose contents are already known (Bhatt et al., 2021; Dufaux,
2021; Ma, Jiang, Fan, Jiang, & Yan, 2020). However, through the advent of CNNs, it
is now possible to automatically identify multiple complex shapes and patterns in
images that were more difficult to recognise before. In fact, CNNs are often used for
pattern detection in image recognition tasks (Goodfellow, Bengio, & Courville, 2016;
LeCun, 1989; LeCun et al., 1989).

The architecture of a CNN typically includes a convolution layer followed by
a pooling layer. Non-linear transformations can also be incorporated between these
layers to introduce non-linearity and noise to what would otherwise be a linear model.
The transformations are known as activation functions, and they enable the CNN
to learn and perform more complex tasks, as well as make the CNN more robust.
Example activation functions that are often used in CNNs include softmax, which
maps values between 0 and 1, and ReLU (Rectified Linear Unit), which only outputs
positive values and sets all negative values to 0.

When building a CNN, the convolution and pooling layers can be incorporated
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any number of times, but what do these layers do? A simple visual example of a CNN
is shown in Fig. 2.2. Consider a coloured image represented by a matrix of pixels on
a computer. Each pixel is a node in the input layer of the neural network. In this
example network, the image is then ‘convolved’, or combined, in the convolutional
layer with filters, which are collections of weights that look for features in the image.
Each filter corresponds to a specific feature, so multiple filters are used if multiple
patterns are to be identified.

The pooling layer then summarises the features extracted and reduces the
size of the input for the next layer, effectively reducing the number of nodes from the
convolution layer to the pooling layer. This is highly beneficial, as it both avoids the
CNN overfitting and reduces the time of computation. Once all of the convolution
and pooling layers have been computed, the penultimate layer of the example CNN
is a fully connected layer, so each node in the fully connected layer receives input
from each node in the previous layer. In our example, this layer flattens all of the
pooled inputs into one feature vector instead of a matrix, and this feature vector
then provides a classification in the output layer. Note that deep learning usually
refers to neural networks that use multiple layers to extract multiple features from
input data. Therefore, since a CNN consists of multiple layers that do just that, it is
a deep learning technique.

One of the first key studies highlighting the success of using a CNN for image
recognition tasks was conducted by LeCun, Bottou, Bengio, and Haffner (1998),
who deploy a CNN and train it to classify handwritten numbers. Since this study,
larger CNNs with more complex architectures have been constructed. These have led
to pre-trained CNNs that are designed for distinct image recognition tasks, saving
many researchers the time and data collection required to train an entirely new CNN
(Carneiro, Nascimento, & Bradley, 2015; Redmon & Farhadi, 2016).

For example, Russakovsky et al. (2015) create a dataset consisting of over 15
million images of objects belonging to roughly 22,000 categories, and make a subset of
the dataset publicly available in preparation for object recognition tasks. Specifically,
the researchers introduce the ImageNet large-scale Visual Recognition Challenge
(ILSVRC) and task other researchers with developing computer vision algorithms that
could detect objects in images. They provide approximately 1,000 images for 1,000
different object categories. Some participants of the challenge achieved considerable
success, including Krizhevsky, Sutskever, and Hinton (2012), who developed a very
influential network architecture for image classification, known as AlexNet. Once it
has been pre-trained on ImageNet data, AlexNet is able to detect objects, such as
‘mushroom’ and ‘leopard’, in unseen images.
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Figure 2.2: A visual depiction of a simple convolutional neural network. An
image is fed to the convolutional neural network, where any number of convolution
and pooling layers extract information from it. The final output represents the
classification.

In addition to object recognition, scene recognition is also possible using a
CNN, as shown by Zhou, Lapedriza, Xiao, Torralba, and Oliva (2014). To train their
Places CNN for scene recognition tasks, they first create a dataset of 7 million images
of scenes, called the Places database. These images are then labelled with semantic
categories related to the kind of scene they depict, such as ‘tower’, ‘highway’ and
‘forest’. Finally, Places CNN is trained on 2.5 million images from this dataset, and
is capable of identifying 205 different kinds of scenes. Note that the architecture
of Places CNN is almost identical to that proposed by Krizhevsky et al. (2012).
The Places CNN network as pre-trained by Zhou et al. (2014) has been successfully
exploited for various scene-related tasks (Hou, Zhang, & Zhou, 2015; Sachin, Sowmya,
Govind, & Soman, 2017; Seresinhe et al., 2017).

Moreover, the Places database has since been updated and now consists of 10
million images of scenes, known as the Places2 database (Zhou, Lapedriza, Khosla,
Oliva, & Torralba, 2018). Zhou et al. (2018) train a new CNN on 1.8 million images
from this dataset and can successfully identify 365 different kinds of scenes. In
general, CNNs have widespread usage for computational tasks, from translating sign
language to identifying the style of an image (Ameen & Vadera, 2017; Feichtenhofer,
Pinz, & Zisserman, 2016; Jaderberg, Simonyan, Vedaldi, & Zisserman, 2015; Nguyen
et al., 2017; Parkhi, Vedaldi, & Zisserman, 2015; Simonyan & Zisserman, 2014; Sun,
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Wang, Yang, & Hu, 2017), as well as classifying YouTube videos (Karpathy et al.,
2014).

In summary, CNNs are capable of extracting vast quantities of features from
images. For example, 205 features can be extracted by Places CNN, and 365 features
can be extracted by the updated version of the CNN. Could these features be used
to understand other measures from relevant images, for example, house prices from
photos of houses? A problem that could arise when investigating this question is
multicollinearity, which is when independent variables in a regression model are
correlated. Modelling a relationship using a huge volume of features could lead to
this, especially in linear models, resulting in less reliable statistical inferences. In the
next section, we examine the problem further and introduce a possible solution: the
use of an elastic net (Seresinhe et al., 2017).

2.2.2 Elastic net models

An elastic net model is a regularised linear regression model that is particularly useful
when a large volume of independent variables are involved in a model, as it is able to
mitigate the impact of multicollinearity and overfitting. To understand how it works,
we first look at the ordinary least squares (OLS) regression, which the elastic net
model is based on.

OLS regression is used to measure the statistical relationship between a
dependent variable and one or more independent explanatory variables. The method
involves estimating the parameters of a linear model subject to a loss function, and is
useful because it provides an unbiased mean estimation with a low variance. Recall
that the loss function measures how well the algorithm performs, so the model aims
to minimise the loss function, as a smaller output from the loss function indicates
smaller model errors and greater model accuracy. The fitted OLS regression model
takes the form

ŷi = β̂0 +
∑N

j=1 β̂jxi,j , i = 1, · · · , n or ŷ = Xβ̂

where

• n = the sample size and i = 1, · · · , n represents a sample

• ŷi = the estimated values of the dependent variable for sample i

• ŷ =
[
ŷ1 ŷ2 · · · ŷn

]T
= the vector of estimated values of the dependent

variable
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• N = the number of independent variables and j = 1, · · · , N represents a
variable

• β̂0 = the estimated value of the intercept of the linear model and β̂j represents
the estimated coefficient for variable j

• β̂ =
[
β̂0 β̂1 β̂2 · · · β̂N

]T
= the vector of estimated values of the indepen-

dent variable coefficients

• xi,j = the observed values of the independent variable for sample i and variable
j

• X =


1 x1,1 x1,2 · · · x1,j

1 x2,1 x2,2 · · · x2,j
...

...
...

. . .
...

1 xi,1 xi,2 · · · xi,j

 = the matrix of observed values of all indepen-

dent variables

and minimises

LOLS(β̂) =
∑n

i=1(yi − ŷi)
2 = ||y −Xβ̂||22

where

• yi = the observed value of the dependent variable for sample i

• y =
[
y1 y2 · · · yn

]T
= the vector of observed values of the dependent

variable

According to Stigler (1981), the first published mention of OLS regression was
by Adrien Marie Legendre in 1805, although the pioneer is unknown. To use OLS
effectively, its associated assumptions need to be met. As outlined by Fox (2015),
Poole and O’Farrell (1971), and Frost (2018), the assumptions are:

1. The regression model is linear in the coefficients and the error term, so the
relationship between the independent and dependent variables is linear

2. The error term has a population mean of zero, so is random

3. All independent variables are uncorrelated with the error term

4. Observations of the error term are uncorrelated with each other

5. The error term has constant variance
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6. No independent variables are perfect linear functions of other variables

7. The error is normally distributed

Datasets may not necessarily meet all of the requirements of OLS, and this
would impact the accuracy of the model. In terms of our research problem, using the
large volume of features extracted from an image by a CNN, such as Places CNN, in
a model based on OLS could lead to multicollinearity in the data. As a consequence,
the OLS residuals would tend to be larger, since the predictions vary greatly from the
observed value, and assumption 6 is violated (no independent variables are perfect
linear functions of other variables). Hence, there are extensions and variations of
OLS to mitigate these consequences (Hastie, Tibshirani, & Friedman, 2009; James,
Witten, Hastie, & Tibshirani, 2013).

In regards to multicollinearity, it would be useful to shrink the resulting errors,
even if the estimator becomes slightly biased. In 1970, Hoerl and Kennard (1970)
introduced the ridge regression to achieve this reduction in errors. They extend
the OLS regression model by augmenting the loss function with an L2 penalty, also
known as L2 regularisation. In other words, they reduce the impact of larger model
coefficients and bias the model towards smaller coefficients by squaring the magnitude
of the coefficients in the loss function. Therefore, the loss function becomes

Lridge(β̂) =
∑n

i=1(yi − ŷi)
2 + λ

∑N
j=1 β̂

2
j = ||y −Xβ̂||22 + λ||β̂||22

where λ ≥ 0 is a tuning parameter that represents the regularisation penalty.
As λ increases, the OLS coefficient estimates decrease and tend towards zero.

Another potential issue with OLS is overfitting. Adding explanatory variables
to a regression increases the number of parameters estimated, and the model tends
to improve simply because there is more information to learn from. This leads to
a model that works well in certain circumstances only. The ridge regression helps
negate this effect, as the coefficients are shrunk, but they are all shrunk by the same
factor. Furthermore, there is no variable selection method, as no variables are set
to zero. A more sparse model would improve interpretability of the model, as the
most relevant and impactful variables give the strongest indication of the relationship
between the independent and dependent variables.

This issue is tackled by Tibshirani (1996), who developed the lasso regression
in. Tibshirani (1996) builds upon the work of Breiman (1995), who proposes a new
method for subset regression called the non-negative garrote. The non-negative
garrote method focuses on shrinking coefficients and setting them to 0, rather than
a small value like the ridge regression. However, compared to the stable ridge
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regression, the non-negative garrote is unstable. Stability refers to how slight changes
in the model can affect model coefficients and their significance, so a stable model is
relatively unaffected by changes in the model, whereas an unstable model is highly
sensitive to changes in the model. The more unstable a method is, the harder it is to
accurately obtain parameter estimates. Therefore, Tibshirani (1996) developed the
lasso regression, which is similar to the non-negative garrote method but more stable
like the ridge regression.

Tibshirani (1996) achieved this balance by extending the OLS methodology
and augmenting the loss function with an L1 penalty, also known as L1 regularisation.
This regularisation adds the absolute value of the magnitude of the coefficients to
the loss function. I.e. the loss function becomes

Llasso(β̂) =
∑n

i=1(yi − ŷi)
2 + λ

∑N
j=1 |β̂j | = ||y −Xβ̂||22 + λ||β̂||1

Again, λ ≥ 0 is a tuning parameter that represents the regularisation penalty,
but it can actually set unimportant coefficients to zero, rather than simply making
them smaller. This makes the lasso regression appropriate for variable selection tasks.

However, the lasso regression has also been critiqued by academics. The
variable selection is fairly dependent on the data provided, so can still be quite
unstable (Nogueira, Sechidis, & Brown, 2018). Combining the qualities of both the
ridge and lasso regressions could lead to stable models that conduct variable selection
but also negate the effects of multicollinearity and overfitting. Hence, Zou and Hastie
(2005) developed the elastic net in 2005. It is also an extension of the OLS regression
and combines the regularisation penalties of the lasso and ridge techniques. The loss
function is then defined as

Lenet(β̂) =

∑n
i=1(yi − ŷi)

2

2n
+ λ(

1− α

2

∑N
j=1 β̂

2
j + α

∑N
j=1 |β̂j |) =

||y −Xβ̂||22 + λ(
1− α

2
||β̂||22 + α||β̂||1)

where 0 ≤ α ≤ 1 represents the mixing parameter between a ridge and lasso
regression. If α = 0, then the model is a purely ridge regression and if α = 1,
then the model is a purely lasso regression. This machine learning technique can
be especially useful when working with considerable quantities of features extracted
from images because the impact of multicollinearity and overfitting can be mitigated,
and a balance between sparsity and important information can be reached.

Widespread usage of the elastic net is facilitated by machine learning libraries,
which are well maintained for multiple programming languages and simplify the
process of using the model. For example, the ‘glmnet’ library is commonly used for
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elastic net regression in the programming language R (Friedman, Hastie, & Tibshirani,
2010; Friedman et al., 2022), and the ‘scikit-learn’ library is popular for elastic net
regression in Python (Pedregosa et al., 2011; scikit-learn, n.d.). Unfortunately, the
notation and terminology between libraries is inconsistent. For example, in ‘glmnet’,
the parameters α and λ are defined in the same way as in Zou and Hastie (2005), so α

is the mixing parameter between the L1 and L2 penalties, and λ is the regularisation
penalty. Yet, in ‘scikit-learn’, l1_ratio is the mixing parameter between the L1 and
L2 penalties, and α is the regularisation penalty. This makes it slightly confusing to
switch between programming languages. For our research, we use the Python library
‘scikit-learn’.

2.2.3 Summary

In this section, we focus on recent advances in machine learning that enable us to
extract information from images. We look at how convolutional neural networks
operate and are able to extract high volumes of features from images. Since modelling
with such a huge quantity of features could lead to multicollinearity, we further
discuss machine learning models that are capable of dealing with large datasets with
considerable multicollinearity.

The aim of our research is to extract information from large volumes of street
view images to infer house prices. The machine learning techniques discussed in this
section therefore provide a foundation for the analyses in the rest of the thesis.

2.3 Outlook

Computational social science has progressed rapidly over the past few decades,
predominantly due to the abundance of accessible large datasets on human behaviour.
Numerous studies have furthered our understanding of human behaviour by exploring
a variety of different data sources, from Twitter data to data from mobile phone
networks, as well as online imagery and house price data. At the same time, recent
advances in machine learning have made it easier to extract information from images
and build models with large numbers of potentially correlated predictors.

However, studies of house prices rarely consider any visual information, even
though the appearance of a property and its surroundings often provide an indication
of its price. Furthermore, many sources of imagery of streets and houses are updated
frequently (Biljecki & Ito, 2021; Columbro, Eudave, Ferreira, Lourenço, & Fabbrocino,
2022), including the crowdsourced services Mapillary (Mapillary, n.d.; Neuhold,
Ollmann, Rota Bulo, & Kontschieder, 2017) and KartaView (KartaView, n.d.).
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Anyone can contribute images to both Mapillary and KartaView, so images on these
platforms cover locations from across the world and are theoretically updated as soon
as someone uploads an image.

As such, there exists the potential to mitigate the impact of delays on official
house price data at a fraction of the cost. If house prices can be estimated accurately
using imagery that is updated more frequently than official house price data, then
members of society could have access to this information at a faster rate than
previously possible. This would allow them to make better-informed decisions that
are based on house prices. For example, if an individual was looking to buy a house
in the UK, they could have a better understanding of how much it would cost to buy
a property in a particular location at a particular time, as the information would be
available sooner.

Furthermore, if the methodology we propose is able to successfully lead to
new insights about house prices, this could allow researchers of house prices to
develop more accurate house price estimation models that incorporate both visual
and non-visual characteristics related to house prices. The methodology could also
be of interest to social scientists who may be looking for novel techniques to use to
extract new information about their topic of research, as our propose d method can
be implemented with different data.

Therefore, in Chapter 3, we follow the principles of social data science and
explore the opportunity to combine street view imagery with deep learning techniques
to understand and estimate house prices in the UK. More specifically, we use the
Places CNN for scene recognition to extract visual information from Google Street
View images of London and use this visual information to estimate house prices in
London using an elastic net.
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Chapter 3

Inferring house prices from Google
Street View images

3.1 Introduction

The most famous source of street-level imagery is Google Street View, one of the
first projects to start collecting such images. Google Street View panoramas mostly
consist of images of building facades and outdoor street environments from a human
perspective. The project continues to grow over time, with new imagery of existing
locations being captured, and new locations being added. At the same time, as
discussed in detail in Chapter 2, advances in deep learning have greatly increased
our ability to determine the contents of an image automatically. Humans are often
able to make inferences about house prices in a neighbourhood from the appearance
of the streets and houses. This chapter therefore asks the following two questions:

1. Can we automatically infer house prices from current Google Street View
images?

2. Can we automatically identify areas which have recently seen relatively high
increases in house prices from Google Street View images?

We build on recent analyses suggesting that median income in small urban
areas can be inferred from Google Street View data using deep learning techniques
(Gutiérrez-Roig, Preis, Seresinhe, Letchford, & Moat, 2017). For this case study, we
focus on house prices in London, the capital city of the United Kingdom.
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3.2 Data and methods

3.2.1 Google Street View images

Figure 3.1 depicts our methodology. The initial step is to acquire large scale data on
visual features of areas across London. We accomplished this by accessing images
from Google Street View from 2016 onwards. Google mainly collects these images
by driving around areas in a Google car (Google, n.d.-b). However, in locations
where a car cannot pass, they use other means of transport such as sailing or walking.
The photos themselves are captured with special cameras that can take photos from
multiple directions at once. For each individual point where photos are taken, the
photos are stitched together to create a complete 360-degree picture of the area.

We build a corpus of visual features from Google Street View images of
London in the same manner as that for a previous analysis by Gutiérrez-Roig et
al. (2017). To access these images, we define a grid of squares over London of 100
metres by 100 metres and at the corner of each square, we take the latitude and
longitude co-ordinates. Using the ‘streetview’ library for Python (Letchford, 2018),
we identify Google Street View panorama IDs for images near each latitude and
longitude co-ordinate pair and the date that the image was taken if it was available.
Using these data, we access four images at each latitude and longitude co-ordinate
pair, looking north, east, south, and west, via the Google Street View API. In early
2017, exploratory analyses of the availability of Google Street View imagery in London
revealed that the best coverage with recent imagery could be achieved by accessing
images captured in 2014 and 2015. In total, we access 518,808 images from 2014 and
2015.

To allow us to combine house sale price data with data from Google Street
View, we carry out our analysis at a small area level, where we associate multiple
house sales and multiple Google Street View images with each small area. To give us
a good number of house sale and images in each small area, we use middle layer super
output areas (MSOAs), of which there are 983 in London. MSOAs are geographic
areas that either contain a population of between 5,000 and 15,000 inhabitants, or
between 2,000 and 6,000 households (Stokes, 2012). Note that for each MSOA in
London, the number of images we access is proportional to the area of that MSOA.
As such, where MSOAs are geographically larger and there is more opportunity for
the appearance of the neighbourhood to vary across its full area, we access more
images to capture this additional variation. The number of images per MSOA ranges
from 88 to 2,164, with a median of 496.
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Figure 3.1: Deep learning framework. We sample Google Street View images
at a 100-metre resolution throughout London and assign each image to its middle
layer super output area (MSOA). MSOAs are geographic areas designed to aid the
reporting and analysis of statistics, with 983 MSOAs in London. We feed each image
individually into the Places convolutional neural network (CNN) developed by Zhou
et al. (2014), which we will refer to as Places205. For each individual image, we
extract 205 Places features and 102 SUN attributes, and store the feature values
assigned by the CNN in a vector of length 307. The feature values relate to the
likelihood of a given feature appearing in a given image. Example features include
‘highway’ and ‘tower’. Next, we calculate the mean feature vector for each MSOA
and use it to train a penalised regression model known as an elastic net. (continues
on the following page)
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Figure 3.1: (continues from previous page) The elastic net attempts to learn the
relationship between the feature vector for an MSOA and the median house price for
that area. The predictions of the model are tested using a ‘leave-one-out’ approach.
In other words, for each MSOA m, the elastic net is trained on data from all other
MSOAs. The feature vector for MSOA m is then passed to the elastic net, which
generates a prediction of the house price for MSOA m. Finally, we compare the
resulting predictions to the actual median house price for each MSOA. Street View
images © 2017 Google.

3.2.2 Places CNN

To extract features from Google Street View images, we run a computer vision
algorithm on each of our collected images (Section 2.2.1). Specifically, we use the
Places205-AlexNet convolutional neural network (CNN) developed by Zhou et al.
(2014) at MIT, which is trained on 2.5 million images from the Places database
of 7 million images. We use Places205 to extract the values of 205 Places scene
categories and 102 scene understanding (SUN) attributes (Patterson, Xu, Su, & Hays,
2014) from each individual image. The features themselves represent scenic elements,
such as ‘yard’ and ‘skyscraper’, and environmental attributes, such as ‘soothing’ and
‘concrete’. Since Places205 is trained to classify scenes, each feature value can be
interpreted as relating to the likelihood of a given feature appearing in a given image.

We first extract the Places scene categories from Places205. To do so, we
simply use the output vector from the CNN which contains the 205 feature values
associated with the scenic features. The feature values are normalised using the
softmax activation function and as a result, all feature values range from 0 to 1 and
the vector sums to 1.

To extract the SUN attributes from Places205, we then extract the vector
produced at the penultimate layer of the CNN and transform the vector into attributes.
The SUN attributes are then normalised, giving us a vector of 102 feature values
associated with environmental features that sums to 1. Thus, for each image in our
dataset, we have a feature vector of 307 feature values combining 205 Places scene
categories and 102 SUN attributes, and the feature vector subsequently sums to 2.

Since Google Street View images are of the outdoors, it does not make sense to
include indoor features in the model, such as ‘kitchen’ or ‘bedroom’. For this reason,
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we remove 69 indoor features from the model. This leaves 136 outdoor features
attached to each image, plus the 102 SUN attributes. As there are multiple images
associated with each MSOA, we calculate the feature vector for each MSOA as the
mean value of the feature vectors for all images in that MSOA. In other words, each
feature value in the feature vector of each MSOA represents the mean feature value
across all images in that MSOA. These mean feature vectors then act as input to our
house price estimation model.

To demonstrate how Places205 operates, we choose a selection of features
and top-scoring Google Street View images for those features, and display them
in Fig. 3.2. Specifically, for three features, we show three images that generate
high feature values, which are provided underneath each image. As we can see,
the CNN is able to recognise elements in images well, and assigns labels to images
appropriately. For example, multiple variations of a bridge are assigned a high feature
value for the label ‘bridge’ (Fig. 3.2a). This provides sufficient evidence that we are
able to automatically extract patterns in and gain an understanding of the visual
environments of areas at MSOA granularity.

Additionally, we can explore the features further and ask whether they are
distributed across London as we would expect from intuition. To do so, we inspect
the spatial distributions of two example features in Fig. 3.3. Specifically, we inspect
the mean feature value distribution maps for the features ‘highway’ (Fig. 3.3a) and
‘tower’ (Fig. 3.3b) at MSOA granularity across London. This helps us understand
whether there is any value in the the visual characteristic measurements provided by
the CNN when processing Google Street View imagery to infer the distribution of
visual characteristics across London.

We would expect to find more highways in the outskirts of London, as the
centre of London is more pedestrianised and there is substantial reliance on public
transport, including the London Underground. Moreover, the centre is much older
and as such the roads are generally narrower. Visual inspection of the map we
produce confirms that mean feature values for ‘highway’ are much higher for areas in
the suburbs. Conversely, we would expect to find more towers in the centre of London,
as there are more high rise buildings in the centre than in the suburbs. Indeed, the
maps reflect that mean feature values for ‘tower’ are much higher in the centre. In
both cases, these spatial distributions of feature values produced by applying Places
CNN to Google Street View imagery accord with intuition. This provides further
reason to believe that these data can help us understand the distribution of different
visual features across London.
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Figure 3.2: Labelling the scene shown in Google Street View images using
Places205. To demonstrate that Places205 generally performs well at identifying the
scene shown in Google Street View images, we first choose three features. For each
feature, we display three images from the top ten images with the highest feature
values, as they reflect what the CNN sees when assigning labels and feature values to
the highest degree. The feature values can be interpreted as relating to the likelihood
of a given feature appearing in a given image, and are assigned using the methodology
described in Section 3.2.2. For each image, the associated feature is its highest-scoring
Places label. (a) Top images for the feature ‘bridge’. The CNN correctly identifies
bridges with varying architectures. (b) Top images for the feature ‘parking lot’. The
CNN correctly identifies car parks filled with cars. (c) Top images for the feature
‘skyscraper’. The CNN can identify skyscrapers correctly, regardless of whether there
are structures blocking the view. Generally, the CNN identifies the scene shown in
Google Street View images correctly. Street View images © 2017 Google.

35



(a)

(b)

H
ig

h
w

ay

0 9 40 71 87 103 238

Feature Value (x10-3)

To
w

e
r

0 12 21 30 34 39 92

Feature Value (x10-4)

Figure 3.3: Prevalence of features in London from Google Street View
images. Do the spatial distributions of the feature values of visual features identified
by the CNN follow intuition? We examine the maps of two example features, where
we analyse Google Street View images of London from our dataset. For a given
feature, the feature values for each MSOA can be interpreted as the prevalence of the
feature in that area, and the mean feature value for each MSOA is generated using
the methodology described in Section 3.2.2. (continues on the following page)
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Figure 3.3: (continues from previous page) For both maps, a darker red indicates a
higher feature value. (a) Map of mean feature values for the feature ‘highway’. The
CNN identifies more highways in the outskirts of London than in the centre of London.
This can be reasonably expected, as the centre of London is heavily pedestrianised
relative to the outskirts of London. As such, public transport is frequently relied
upon for travelling around the centre. (b) Map of mean feature values for the
feature ‘tower’. The CNN identifies more towers in the centre of London than the
remainder of London. Since the centre of London contains more high rise buildings
than the suburbs of London, we would intuitively expect to see more tall towers
around the centre of London too. Hence, the CNN operates intuitively. Overall, we
can confirm that the spatial distributions of features broadly follow intuition. For all
maps, standard deviation breaks are implemented with six bins. Note that the maps
therefore use different scales. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains Street View data © 2017 Google.

3.2.3 House price data

We analyse sale price data from house transactions completed during 2015 and 2016,
the two most recent complete years of data at the time of analysis. Data regarding
house transactions are freely available from the HM Land Registry (2016), where the
full postcode is given for each transaction. For each postcode, we determine which
MSOA the postcode falls in using data accessed from the London Datastore (Greater
London Authority, n.d.). Of the 250,171 transactions that took place during 2015
and 2016, the postcodes of 691 transactions could not be matched with an MSOA, as
the postcodes were not present in the London Datastore data at the time of analysis.

The house price data themselves are skewed with a long positive tail, repre-
senting a small number of properties with very high house prices. For this reason,
we work with median house prices per MSOA rather than mean prices, so that the
small number of expensive properties in an area does not disproportionately affect
the average measure of prices in an area.

3.2.4 Elastic net model

For each MSOA, we calculate a mean visual feature vector of 307 features (Sec-
tion 3.2.2). However, including too many features in a simple linear regression could
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lead to problems such as overfitting and multicollinearity. In turn, overfitting and
multicollinearity result in poor accuracy of model predictions.

One approach to dealing with these problems is to use a penalised regression
model. These types of models build on a simple linear regression by including a
loss function, known as the penalty. The coefficients of the parameters are then
constrained and penalised to prevent problems such as overfitting from occurring.

Due to the sheer volume of features we extract from our images, we require
a penalised regression model with a robust variable selection method. Therefore,
we use an elastic net model, following a methodology introduced by Seresinhe et
al. (2017). As discussed in Section 2.2.2, the benefits of using an elastic net model
include its ability to automatically pick the most important features and set the
remaining features to zero.

With the features as predictors and the house prices as the outcome variable, we
build an elastic net model. We use the ‘scikit-learn’ library in Python and employ the
elastic net with various values of l1_ratio, where 0 ⩽ l1_ratio ⩽ 1 is the regularisation
penalty such that l1_ratio = 0 is a lasso regression and l1_ratio = 1 is a ridge
regression. We start by trying l1_ratio values from 0.1, 0.2, · · ·, 0.9 and narrow down
to the l1_ratio values 0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999, 0.99999999.
Each and every small difference in the l1_ratio impacts the model performance, so
we report it fully. We then obtain the l1_ratio and corresponding α that generates
the best model. Recall that the α refers to the shrinkage parameter, which allows
the model to determine which features are important.

We check our optimal parameters via cross-validation, which is a technique
that determines how well a model generalises by analysing the errors. This approach
is useful when trying to avoid overfitting, as it involves splitting a dataset into a
‘training’ set that the model is trained on and a ‘testing’ set which is validated. For
the model, we use 3-fold cross-validation, to find the model with the highest R2, and
hence best fit. More precisely, 3-fold cross-validation involves splitting the dataset
into three sections and using two of the sections as the training set and one section
as the testing set.

After we find our optimal values of l1_ratio and α, we implement a separate
leave-one-out cross-validation on the entire dataset to generate predictions of house
prices. Specifically, we leave out one MSOA, m, from the dataset as our ‘testing’
data and train a new elastic net for estimating house prices, with our optimal values
of l1_ratio and α, on our ‘training’ data consisting of the remaining 982 MSOAs.

During training, the features of the remaining 982 MSOAs, as obtained from
Google Street View images and the CNN, are the predictors. Their corresponding
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median house prices are the outcome variable. Following training, we test the model
and use the visual features of the excluded MSOA, m, in order to obtain a prediction
of the median house price in MSOA m.

3.2.5 Measuring change in house prices

We also investigate whether it is possible to automatically identify areas in which
house prices have recently risen or fallen from Google Street View imagery. A simple
approach to modelling changes in house prices is to look at absolute changes in price
for each MSOA in London. However, we find that the areas with the largest absolute
increases usually have the highest original prices, reflecting the phenomenon that
the rich get richer. As a result, identifying areas with the highest absolute increases
in house price may not be a greatly different task to identifying the areas with the
highest median house prices.

An alternative approach to modelling changes in house prices would be to
look at how the areas of London rank against each other in terms of house prices,
and then examine the change in rank over time. Ranking areas by house price brings
the focus more on the change between areas, irrespective of the exact differences in
house prices. A weaker ordering of areas, where we ignore the exact values of the
house prices but instead base the ordering on their relative rankings alone, allows
us to focus on the qualitative differences between house prices but in a quantitative
manner. This forms the basis of our second analysis, where we aim to develop a
model that can infer changes in house price rank.

We consider house price changes over the past ten years, from 2005 and 2006
to 2015 and 2016. As in Section 3.2.3, we obtain house price data from the HM Land
Registry for the years 2005 and 2006. When matching MSOAs from the London
Datastore to postcodes for that time period, only 240 of the 312,344 transactions
could not be matched, as the postcodes for those transactions were not present in
the London Datastore data at the time of analysis.

To rank, we set the highest rank of 983 to the MSOA with the highest house
price, and the lowest rank of 1 to the MSOA with the lowest house price. If two areas
have the same median house price, we give them both the mean rank. The change in
rank is then given by the rank during 2015 and 2016 minus the rank during 2005 and
2006, as this is the simplest to interpret. For example, let us calculate the change in
rank for an MSOA in Barking and Dagenham (E02000012) from our dataset. During
2005 and 2006, this MSOA has a ranking of 532, and during 2015 and 2016, it has a
ranking of 426.5. This rank is not a whole number because there are 10 MSOAs with
the same median house price, including E020000012, and they would normally have
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ranked from 422 to 431. However, since we take the mean of the ranks and assign
the same mean rank to all MSOAs with the same median house price, they are all
ranked 426.5. Given that the 2015 to 2016 rank is 426.5 and the 2005 to 2006 rank is
532, the change in rank is calculated as 426.5 - 532 = -105.5. A change in rank of
-105.5 indicates a decrease in ranked price over the decade, hence a relative reduction
in median house price.

Our analysis aims to determine whether we can identify the areas that had
the biggest changes in house price rank from Google Street View imagery from 2014
and 2015. We therefore employ an elastic net model using the same methodology
described in Section 3.2.4 with the same features as input to predict the change in
house price rank instead of the median house price.

3.3 Results

3.3.1 Estimating local house prices in 2015 and 2016 from Google
Street View images

How well does our house price estimation model perform? We first examine the
house price data from 2015 and 2016, which reveal that median house prices for
MSOAs across London range from £69,460 to £1,270,000. Figure 3.4a shows the
observed median house prices, where a darker area represents a higher house price.
The observed median house price refers to the true median house price for each
MSOA. A number of patterns in house prices across London can be observed from
this map. For example, houses in the centre of London are consistently priced at
a high level, whereas parts of the east of London are priced at relatively low levels
(Fig. 3.4a).

Undoubtedly, there are differences in visual characteristics of different areas.
These visual fingerprints might reflect socioeconomic characteristics of the area, like
house prices. Therefore, our goal is to investigate whether it is possible to infer house
prices across London from Google Street View data. Employing the methodology
summarised in Fig.3.1 results in positive findings. In the elastic net, we find the
optimal value of l1_ratio to be 0.999999 with an α of 4.73 (to 2 decimal places). We
also conduct a regression analysis comparing the observed median house price for
each MSOA with the estimates produced by the elastic net using a leave-one-out
analysis. This analysis indicates that the model performs reasonably well (R2 = 0.56,
N = 983, p < 0.001).
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Figure 3.4: Evaluation of estimates of London house prices during 2015
and 2016 from Google Street View images. (a) Map of median house prices for
each MSOA (‘Observed’). Darker areas correspond to higher house prices. (b) Map
of median house prices for each MSOA estimated from Google Street View images
(‘Predicted’). Again, darker areas correspond to higher house prices. We generate
estimates using the methodology outlined in Fig. 3.1. Visual inspection reveals that
median house prices estimated from Google Street View images correspond well to
the true median house prices for a given area. For example, the east of London is
both observed and predicted to have cheaper housing than the centre of London. A
regression analysis confirms that the elastic net model generates reasonable estimates
of house price (R2 = 0.56, N = 983, p < 0.001). (c) Map of the errors in median
house price estimates for each MSOA (‘Error’). Blue denotes an underestimate and
red denotes an overestimate. (continues on the following page)
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Figure 3.4: (continues from previous page) Median house prices in the south-east
tend to be overestimated, whereas median house prices in the north-west tend to be
underestimated. (d) Log-log plot of observed and predicted median house prices.
The red dots represent the MSOAs of London and the blue line represents where
perfect predictions should fall. We find that median house prices under £1,000,000
are generally estimated well, but estimates for areas with higher median house
prices are generally too low. This is possibly because the majority of median house
prices are between £300,000 and £600,000, such that the model is more accurate for
MSOAs with a median house price in that range. For all maps, quantile breaks are
implemented with six bins. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains Street View data © 2017 Google.

To determine whether a model is successful or not based on the R2, we use
the recommendations outlined by Chin (1998) throughout this thesis. Specifically,
Chin (1998) suggests that models achieving an R2 value of 0.67 indicate substantial
success, an R2 value of 0.33 indicates moderate success, and an R2 value of 0.19
indicates weak success. We take this into consideration when we determining how
well our models perform.

Figure 3.4b shows a map of the predicted median house prices, or in other
words, the estimate of median house prices produced from Google Street View imagery
from 2014 and 2015. We find that there is a good match between the geographic
distribution of the observed house prices shown in Fig. 3.4a and the predicted house
prices in Fig. 3.4b.

To compute the error for each MSOA, we subtract the observed median house
price from the predicted median house price. In Fig. 3.4c, we display the errors,
where blue denotes an underestimate of median house prices, and red denotes an
overestimate of median house prices. We find that the mean absolute error is £97,710
and the mean absolute percentage error is 20.24% (both to 4 significant figures). We
compare these errors with those achieved by a baseline mean model, to see if our
model is an improvement upon the baseline model. The mean model predicts all
median house prices in all MSOAs to be the median house price of £479,800, and
achieves a mean absolute error of £152,800 and mean absolute percentage errors
of 32.13% (all to 4 significant figures). Indeed, our model outperforms the baseline
model. Mapping the prediction errors from our model reveals that house prices in
the north-west and south-west of London are generally underestimated, and house
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prices in the south-east of London are generally overestimated.
Why does the model tend to overestimate house prices in the south-east,

but underestimate house prices in the north-west and south-west? One possible
explanation could be the role of transport connections. The presence of good transport
connections is likely to have a strong effect on house prices (Efthymiou & Antoniou,
2013; Gibbons & Machin, 2005), as better transport connections allow people to make
quicker journeys to places of work, amenities, and other locations. The south-east
of London in particular has poorer transport connections than the north-west of
London, as it lacks a dense network of underground stations. As the model only uses
visual information to estimate house prices, it is unable to account for the fact that
journey times from the south-east to the centre of London tend to be longer than
from areas in the north-west with similar appearances, which impacts property prices
in those areas. Hence, it seems likely that the algorithm concludes that areas in the
south-east have visual characteristics that resemble those of areas in London suburbs
with higher house prices.

Figure 3.4d shows a scatter plot of the observed house prices against the
predicted house prices, where red dots represent MSOAs of London and the blue
line represents where perfect predictions should fall. The model has particular
difficulty with areas where the median house price is higher than £1,000,000, which
are underestimated more frequently than they are overestimated. It seems likely that
this is due to the distribution of house prices having a long tail of particularly high
house prices. The median house price of all areas is £416,875, whereas the maximum
house price is £27,000,000. Only 30 MSOAs have house prices above £1,000,000 (3%)
and 677 of 983 MSOAs have a median house price between £300,000 and £600,000
(69% to 2 significant figures). A lack of a large number of examples of areas with high
median house prices may have caused the model difficulty in learning to recognise
the visual characteristics of such areas. Alternatively, it is possible that the model
needs some recalibration to better deal with this long tail of high house prices, a
point we return to in Section 3.4.

Each non-zero elastic net coefficient extracted from the model in Fig. 3.5
indicates the impact that the corresponding visual feature has on inferring median
house prices. For each coefficient, the coefficient value indicates the size of the impact
of that feature on house price estimation, and whether the impact is positive or
negative. In other words, it shows us whether the feature is associated with higher
house prices (positive coefficient) or lower house prices (negative coefficient) and to
what degree. This allows us to gain insight into how the model generates estimates
of median house prices across London.
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As the model performs well, we would therefore reasonably expect positive
model coefficients to represent characteristics of areas with higher median house
prices, and negative model coefficients to represent characteristics of areas with lower
median house prices. From the positive coefficients in Fig. 3.5, we find that some of
the features that the model associates with areas with higher median house prices
are ‘palace’, ‘office building’, and ‘courthouse’. From the negative coefficients, we
find that some of the features that the model associates with lower median house
prices are ‘slum’, ‘playground’, and ‘hospital’. At least some of these associations
follow expectations. For instance, office buildings are more likely to be found in the
centre of the city, where prices are higher.

However, some of the associations that the model makes are unexpected. For
example, ‘rice paddy’ is included as a positive coefficient, but we would not expect to
find a ‘rice paddy’ in London given the UK climate. Similarly, the model identifies
‘rainforest’ as a negative coefficient, but no rainforests exist in London.

Given that at least some of the connections made by the elastic net between
features and house prices make sense, we want to understand why the elastic net is
using unexpected features to estimate median house prices in London. We investigate
whether some of the unexpected features are not very prevalent in the images of
London. We find that while only 1.4% of our Google Street View images have
‘rainforest’ as one of their top five features, 22% of images have ‘hospital’ as one
of the top five highest-scoring features (to 2 significant figures). We also note that
some of the most unexpected features, such as ‘rainforest’ and ‘rice paddy’, have low
coefficients in the model.

Although some of these unexpected features do not appear that frequently
in our images, we decide nevertheless to examine examples of images receiving
these labels to gain a full picture of the operation of the methodology. To begin
our examination, we choose four unexpected features from Fig. 3.5, and for each
feature, we sample three images that generate high feature values. We display three
high-scoring images for each feature because they most reflect what the CNN sees
when assigning labels and generating feature values. Note that for each image, the
associated feature is its highest-scoring Places label. By inspecting these images, we
should then be able to understand why such features are associated with house prices.
Figure 3.6 displays our chosen features and their corresponding images. Feature
values are given underneath each image.
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Figure 3.5: Elastic net coefficients for estimates of London house prices
during 2015 and 2016 from Google Street View images. Positive coefficients
relate to visual features that are associated with higher median house prices, and
negative coefficients relate to visual features that are associated with lower median
house prices. We build an elastic net model using the methodology outlined in Fig. 3.1,
and depict the resulting coefficients for all features where the coefficient is not zero.
The model has learned to associate elements of images that resemble various places
and features with higher and lower median house prices. For example, the model
has learned to associate the elements ‘palace’, ‘office building’, and ‘courthouse’ with
areas that have higher median house prices, and ‘slum’, ‘playground’, and ‘hospital’
with areas that have lower median house prices. At least some of these associations
make intuitive sense. For example, a ‘palace’ is a grand, ornate property that is
expensive to both buy and maintain, so we would expect it to be in an affluent area.
However, the model also associates some surprising features with areas in London.
For example, neither a ‘rice paddy’ nor a ‘rainforest’ would be expected in London.
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Figure 3.6: Understanding unexpected features. We want to understand why
some features that the elastic net is using to generate estimates of median house
prices are not features that one would expect to find in London on a widespread basis.
For example, what pictures are being labelled as a rainforest? To do so, we start by
choosing four unexpected features from Fig. 3.5 and for each feature, we select three
images from the ten images with the highest feature values. We showcase a selection
of top images for each feature because those images reflect, to the highest degree,
what the CNN sees when assigning the feature label to those images. Furthermore,
the associated feature for each image is its highest-scoring Places label. All images
are from the set of Google Street View images accessed for this analysis, all feature
values are determined by the CNN, and the feature values can be interpreted as
relating to the likelihood of a given feature appearing in a given image. By inspecting
these images, we hope to understand why such unexpected features are detected in
images of London. (continues on the following page)
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Figure 3.6: (continues from previous page) (a) Top images for the feature ‘palace’.
The CNN labels large buildings with a historical aesthetic and numerous windows as
palaces. (b) Top images for the feature ‘rice paddy’. The CNN labels large fields with
light coloured barriers as rice paddies. (c) Top images for the feature ‘mansion’. The
CNN labels housing that is connected, such as terraced and semi-detached housing, as
mansions. (d) Top images for the feature ‘rainforest’. The CNN labels large clusters
of lush, green trees as rainforests. Overall, the CNN seems to give images that share
shapes and patterns the same label but the labels themselves do not always reflect
the actual contents of the images accurately. This may be because the CNN was
trained on diverse images from all across the world where the prior probability of
scenes such as rainforests and rice paddies would be higher, whereas in our case study,
we only analyse images from London. Street View images © 2017 Google.

Notice that the images that are given high scores for a particular label tend
to look very similar. For example, all the images labelled as ‘rainforest’ in Fig. 3.6d
are images that are nearly exclusively filled with greenery. Similarly, all the images
labelled as ‘mansion’ in Fig. 3.6c contain housing that is sufficiently broad to nearly
fill the frame from left to right, with repeating patterns in the architecture. However,
the labels do not always reflect the content of the images precisely. For example, the
images labelled ‘rainforest’ are not images of rainforests but other greenery, and the
images labelled ‘mansion’ are, in some cases, images of impressive housing, but not
necessarily houses that many British citizens would refer to as mansions.

This could be due to the fact that the CNN was trained on images from all
across the world, whereas we are only analysing images from the UK in this case
study. For example, we do have large trees with lush greenery in the UK but we know
that they are not part of a rainforest, and simply luscious trees. However, there are
many locations over the world that do have the natural environment for rainforests
that consist of large, leafy trees, such that the prior probability of a ‘rainforest’
score would be higher. This may lead to the CNN associating leafy tree visuals
with rainforests more frequently than is appropriate in the UK. Architecture and
landscapes vary from country to country, so the generalisations made by the CNN do
not always translate to our images. However, images given a certain label are usually
similar. This means that a label will generally reflect some sort of consistent visual
characteristic in a scene that could be plugged into further modelling, for example
with an elastic net. However, care needs to be taken in interpreting the labels too
literally, as features can attain high scores without exactly reflecting the content of
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the image.

3.3.2 Estimating changes in local house price rank from 2005 and
2006 to 2015 and 2016 using Google Street View images

Which areas have recently seen relatively high increases in house prices? The next
step of our analysis is to evaluate whether Google Street View data can provide any
insight into this question. Before we do this, we wish to further understand our house
price data for the two periods we will compare. Specifically, we want to confirm
that we have sufficient data coverage across local areas of London to draw accurate
conclusions. Figure 3.7 contains maps of the distribution of house transactions for
2015 and 2016, as well as 2005 and 2006 across all areas in London. For both maps,
a darker red indicates a higher number of transactions in a given area.

During 2015 and 2016, the number of houses sold across MSOAs in London
ranges from 52 to 1,654. The median number of transactions is 227. This highlights
that the distribution of property transactions across MSOAs in London during this
time period has a long tail of greater numbers of property transactions. During 2005
and 2006, the number of houses sold across MSOAs in London ranges from 37 to
1,198, and the median number of transactions is 373. This suggests that there were
somewhat more sales across London during 2005 and 2006 than during 2015 and 2016.
Indeed, 250,171 transactions took place between 2015 and 2016, whereas 312,344
transactions took place between 2005 and 2006. In line with this observation, only
150 MSOAs (15% to 2 significant figures) had fewer than 200 transactions in 2005
and 2006 compared to 373 MSOAs (37% to 2 significant figures) in 2015 and 2016.
Broadly speaking, we see that more transactions occur in areas towards the centre of
London in both time periods. However, there is good data coverage across all areas
in London. At least 37 transactions take place in each MSOA in both time periods,
so there are no areas with zero transactions.

As described in Section 3.2.5, we measure the changes in median house prices
from the median house price rankings of all MSOAs in London from two time periods.
This allows us to understand how areas evolve over the decade relative to each
other. Preliminary analysis of the changes in ranked price reveals that areas evolve
at different paces, since some areas do not change in ranked price over the decade,
whereas other change substantially. To help us better understand the data we are
modelling, we inspect the rank distribution for 2015 to 2016 and 2005 to 2006 visually.
In Fig. 3.8, we map the rank distributions of MSOAs across London during 2015 and
2016, as well as 2005 and 2006.
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Figure 3.7: The distribution of house transactions across London from 2015
and 2016 to 2005 and 2006. Before attempting to estimate changes in median
house prices across local areas of London, we want to confirm that we have sufficient
data coverage across all areas of London for the two time periods we compare, as
we can draw more accurate conclusions about changes in house prices from more
representative data. Therefore, we investigate how the number of transactions across
local areas of London is distributed. For both of the following maps, a darker red
represents a greater number of house transactions. (continues on the following page)
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Figure 3.7: (continues from previous page) (a) Map of the number of transactions
in each MSOA during 2015 and 2016. The number of transactions ranges from 52
to 1,654, and the median number of transactions in each MSOA is 227. (b) Map
of the number of transactions in each MSOA during 2005 and 2006. The number
of transactions ranges from 37 to 1,198, and the median number of transactions
in each MSOA is 297. During both time periods, there is quite a large range of
transactions, and the transactions exhibit a positively skewed distribution with a
long tail of greater numbers of property transactions. Visual inspection of the maps
shows that more transactions occur in and around the centre of London during both
time periods. However, there is good coverage across all MSOAs of London. For all
maps, quantile breaks are implemented with six bins. Contains National Statistics
data © Crown copyright and database right 2011. Contains Ordnance Survey data
© Crown copyright and database right 2011.

A darker red indicates a higher ranked house price. From visual inspection,
the rankings do not appear to change drastically over the decade. Areas in the centre
of London tend to exhibit a large improvement over the decade, especially towards
the west. In contrast, areas towards the east and south of London exhibit a lesser
improvement over the decade.

We investigate whether areas with greater changes in ranked median house
price can be identified from Google Street View imagery. Figure 3.9a displays the
actual change in rank across areas in London. Blue indicates a decrease in ranked
price and red indicates an increase in ranked price over the decade. The darker the
colour, the larger the change.

Figure 3.9a reveals that some areas in the eastern part of London have risen
in the ranks, especially those closest to the centre from the north and the south.
We can also see that there is a clear divide between the suburbs and the centre of
London. Namely, areas in the centre of London tend to increase in ranked price
over the decade, whereas the suburbs appear to decrease in ranked price. Some of
the changes in ranked price may seem large, but we note that a change in median
house price from £235,000 to £340,000 would be sufficient to make an MSOA jump
a quarter of the table, as was the case for an MSOA in the south-west of London
(E02000847).
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Figure 3.8: The distribution of rankings of median house prices in MSOAs
across London during 2015 and 2016, and 2005 and 2006. We visually inspect
the median house price rank distribution for 2015 to 2016 and 2005 to 2006 to help
us better understand the data we are modelling. During each time period, we rank
MSOAs in London from 983 (highest median house price) to 1 (lowest median house
price). (a) Map of median house price rankings during 2015 and 2016. (b) Map of
median house price rankings during 2005 and 2006. For both maps, a darker red
represents a higher ranked median house price. We find that the ranks have not
changed dramatically over the decade. The greatest changes can be observed in the
centre and east of London. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011.
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Figure 3.9: Inferring changes in ranked house prices across local areas in
London using Google Street View images. Can house price changes be inferred
from Google Street View images? (a) Map of change in median house prices for
each MSOA (‘Observed’). We rank MSOAs in London from 983 (highest price) to 1
(lowest price) using house price data from 2015 and 2016. We then rank the MSOAs
in the same fashion using house price data from 2005 and 2006. The change in each
MSOA is then given by the rank during 2015 and 2016 minus the rank during 2005
and 2006. In the map, blue denotes a decrease in ranked price over the past decade
and red denotes an increase in ranked price over the decade. Broadly speaking, we
see that areas in the centre of London have continued to rise in relative house price.
However, some areas in the eastern parts of London have also risen in the ranks,
particularly those closest to the centre in both the north and the south. (b) Map of
change in median house prices for each MSOA estimated from Google Street View
images (‘Predicted’). Again, blue denotes a decrease in ranked price over the past
decade and red denotes an increase in ranked price over the decade. (continues on
the following page)

52



Figure 3.9: (continues from previous page) We estimate the change in ranked price
using the methodology discussed in Section 3.2.5. Visual inspection of both maps
shows that the elastic net model can capture some patterns, but overgeneralises
somewhat, mostly predicting relative increases in price in the centre of London. A
regression analysis confirms that the model captures some of the observed pattern in
median house price changes, but not all (R2 = 0.27, N = 983, p < 0.001). (c) Map of
the errors in estimates of change in median house price rank for each MSOA (‘Error’).
Blue denotes an underestimate and red denotes an overestimate. The map again
highlights that the model has underestimated rank increases in parts of the east of
London, close to the centre. (d) Scatter plot of observed and predicted change in
rank. The red dots represent MSOAs of London and the blue line represents where
perfect predictions should fall. We find that the change in rank estimates are capped
between -200 and 200, whereas the true changes in rank range between -424.5 and
522. For all maps, quantile breaks are implemented with six bins. Contains National
Statistics data © Crown copyright and database right 2011. Contains Ordnance
Survey data © Crown copyright and database right 2011. Contains Street View data
© 2017 Google.

When employing the elastic net model to produce estimates of changes in
ranked median house prices, we find the optimal value of l1_ratio to be 0.99 with a
corresponding α of 0.0036 (to 2 significant figures). As with our analysis of median
house prices in Section 3.3.1, we conduct a regression analysis using leave-one-out
cross-validation to understand how well the model performs. We find that the
model does pick up some patterns in the changes in ranked house price, but not all
(R2 = 0.27, N = 983, p < 0.001).

Figure 3.9b displays the estimated change in rank across areas in London.
We generate the estimates using the methodology described in Section 3.2. Upon
inspection, we can confirm that the elastic net model captures some of the afore-
mentioned patterns across London. However, it has a tendency to overgeneralise the
difference between the centre and the suburbs, estimating increases in ranked price
in the centre of London and decreases in ranked price in the suburbs, whilst missing
further nuances in the pattern. A plausible cause for this tendency is that areas
that have seen higher recent changes in house price may not generally be visually
distinctive in recent imagery, whereas visual differences between the centre and the
suburbs are easy to pick up on. To improve these estimates, it may be necessary to
examine how images change over time instead.
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From the maps, we can see that the majority of areas that see a large increase
in ranked price over the decade are indeed those near the centre of London, particularly
towards the north-east and south-east. Consequently, it is likely that the model has
simply learnt to associate features that are common in the centre of London during
2014 and 2015 with rank increases over the decade.

From the prediction errors in Fig. 3.9c, we notice that the model struggles
to capture relatively extreme changes in ranked price. This is clearly visible in the
scatter plot (Fig. 3.9d), since the model always produces estimates of the change
in rank between -200 and 200. The rank changes range from -424.5 to 522 with a
median change in rank of -3.5. Of the 14% of areas whose ranking changes by more
than 200 places, 84 areas increase in ranked price and 55 areas decrease in ranked
price from 2005 and 2006 to 2015 and 2016. We may be seeing these errors because
the distribution of ranked median house price changes is heavy-tailed, so it violates
the assumption of normality that is required by the model.

As with the house price estimation analysis (Section 3.3.1), we extract elastic
net coefficients from the model and present all non-zero coefficients in Fig. 3.10.
Positive coefficients are connected to a rise in ranked price over the decade, and
negative coefficients are connected to a reduction in ranked price over the decade.
We would expect that some coefficients associated with an increase in ranked price
might also be associated with higher median house prices, since some areas that
exhibit high median house prices correspond to areas that have seen increases in rank
prices over the decade (e.g. some areas of the centre of London). In other words,
we would expect the positive and negative coefficients extracted from the model to
be somewhat similar to those extracted during the house price estimation analysis
(Fig. 3.5), even if the exact coefficient values are different.

Some of the coefficients we extract from the model are the same, like the
positive coefficient ‘apartment building’ and negative coefficient ‘motel’. However,
some coefficients are new, like the positive coefficient ‘fairway’ and the negative
coefficient ‘shrubbery’. In fact, some coefficients are inverted such that they are
positively associated with median house prices but negatively associated with changes
in house price rank. Examples include ‘courthouse’ and ‘palace’. Similarly, some
coefficients that are negatively associated with median house prices are positively
associated with changes in house price rank, such as ‘hospital’ and ‘playground’.
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Figure 3.10: Elastic net coefficients for estimated changes in ranked median
house prices of MSOAs across London from Google Street View images.
We rank MSOAs in London and estimate the change in rank over a decade using the
methodology described in Section 3.2.5. The resulting coefficients from our elastic
net are depicted for all features where the coefficient is not zero. Positive coefficients
correspond to features associated with increases in ranked price over the decade, and
negative coefficients correspond to features associated with decreases in ranked price
over the decade. It would be reasonable to expect some of the features associated with
higher median house prices in Fig. 3.5 to also be associated with increases in ranked
prices. However, this is not the case for many of the coefficients. For example, the
features ‘hospital’ and ‘playground’ are strongly positive coefficients in this analysis,
instead of negative coefficients as in Fig. 3.5. Likewise, ‘courthouse’ and ‘palace’ are
strongly negative coefficients in this analysis, instead of positive coefficients as in
Fig. 3.5.
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Examination of the map of observed median house prices (Fig. 3.4a) and
the map of observed changes in median house price rank (Fig. 3.9a) shows that
some areas have high median house prices but did not climb as highly in the ranks,
whereas other areas have low median house prices but did climb high in the ranks.
For example, one MSOA in the centre of London (E02000978) has a large median
house price of £2,700,000 but only a very modest increase in rank of 2. The swap in
some of the coefficients may relate to some of these areas.

3.4 Discussion

In this chapter, we take initial steps towards understanding whether we can gain
information about local house prices across London from street-level imagery on
Google Street View. Our initial steps consist of two main analyses. We attempt to
infer median house prices in London during 2015 and 2016, and we also attempt to
model changes in ranked median house prices in London from 2005 and 2006 to 2015
and 2016.

To carry out these analyses, we exploit a sample of Google Street View images
from London during 2014 and 2015, and feed them into a CNN to extract visual
features and their quantitative values. We then aggregate the feature values of all
images at MSOA granularity to obtain mean feature values for each feature in each
MSOA. Finally, the mean features are used as input in an elastic net regression
to estimate median house prices and changes in ranked median house prices. We
discover that median house prices can be inferred well from Google Street View
images alone, but the model struggles with more extreme high prices. This may be
due to the positively skewed distribution of our median house price data, where there
are only a few examples of areas with high median house prices. A possible solution
to this would be to change the configuration of the model to better take this skew
into account. For example, we could estimate the logarithm of median house prices.
This may lead to a model that estimates median house prices with greater accuracy.

The model particularly tends to overestimate prices in the north-west of
London, and underestimate prices in the south-east of London. We believe this could
be due to the impact of external factors on house prices, such as the availability of
transport links. In future, we could incorporate such external details into the model,
or even combine image data with pre-existing models that estimate house prices
based on more traditional variables, such as the number of beds in a property, the
size of the house, and when a property was built (Case, Clapp, Dubin, & Rodriguez,
2004; Lu, Charlton, Harris, & Fotheringham, 2014; Osland, 2010). This could pave
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the way for house price estimation models that incorporate differing yet relevant
variables and perform with high accuracy.

In addition to estimating median house prices well, we also find that the
model has some success in estimating changes in ranked median house prices. As
with our median house price data though, our ranked median house price changes are
not normally distributed, so the model estimating changes in median house prices
struggles with extreme values. More precisely, the distribution of changes in median
house price rank are heavy-tailed. Changing the model in future may alleviate this
issue and improve the accuracy of the model. For example, a neural network could be
used to estimate changes in ranked price. An architecture could be developed such
that heavy-tailed distributions are the focus, and the leave-one-out cross-validation
approach could be used to generate estimates of the changes in median house price
rank.

Moreover, the model struggles to capture some of the variations in median
house prices over the decade from the data we hold. This may be because we lack
visual information on changes over time, as we only estimate the price changes from
images taken towards the end of the period in question. In future, we could improve
the accuracy of the model by using images from two separate time periods to estimate
the changes between these two time periods. While Google Street View launched in
2007, such that image data representative of 2005 and 2006 are not available, this
approach would be feasible for many other time periods. We could also make use
of more images in the model overall. Currently, we make estimates at MSOA level
and sample images across London using a 100 metre by 100 metre grid. However, if
we increased the number of images in our sample by reducing the size of the grid
squares, we may be able to improve the accuracy of estimates at MSOA level, and
make estimates at a higher spatial granularity too.

To summarise, our findings confirm that it is possible to infer house prices
from large scale street-level image data combined with deep learning techniques. As
we find that we can successfully infer median house prices from Google Street View
imagery, we ask whether this success is due to the specific data source. Could an
alternative street-level image source allow us to construct house price estimation
models of equal or greater accuracy? We investigate this question in Chapter 4.
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Chapter 4

Inferring house prices from
Geograph images

4.1 Introduction

In Chapter 3, we found that we can use Google Street View images of neighbourhoods
to infer local house prices in London. We hypothesise that this approach works
because the appearance of a neighbourhood is likely to both impact and be affected
by local house prices. However, other sources of street-level imagery are also available,
for example from crowdsourcing projects. Would this approach work with other
street-level imagery sources too? How might performance compare?

An example of an alternative street-level image source would be Geograph.
The Geograph project aims to collect images of every square kilometre of Great
Britain and Ireland. Members of the public upload photos to Geograph and are
encouraged to provide images that would give a viewer a good sense of what a local
area looks like. As such, the Geograph image dataset does not only consist of photos
of streets, but contains images of off-road areas such as parks, canals, and mountains
too.

Furthermore, Geograph images are non-proprietary and shared under a Cre-
ative Commons license. The website is updated frequently, so large quantities of
data are available for all areas across Britain and Ireland, including London, from
March 2005 onwards when the project began. Photos are not restricted to this time
frame though, as users are able to upload photos from any time period in the past.
Geograph therefore offers a rich source of open data imagery, potentially offering
fuller insights into local neighbourhood environments, with a relatively long history
available for analysis.
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Thus, we aim to determine whether the combination of Geograph images and
deep learning can be utilised to gain insights into the development of house prices in
a given area. To do this, we ask the following questions:

1. Can we automatically infer house prices from current Geograph images?

2. Can we automatically identify areas which have seen relatively high recent
increases in house prices from Geograph images?

3. How do the insights gained from Geograph images differ from those gained
from Google Street View images?

4. How does performance of the house price estimation methodology compare for
these two data sources?

4.2 Data and methods

4.2.1 House price data

Figure 4.1 depicts our methodology. To help us compare the Geograph analyses with
the Google Street View analyses (Section 3.3.1), we focus on house transactions from
2015 and 2016, and use the same house price data as for the Google Street View
analysis. Again, as the house price data are skewed with a long positive tail, we
calculate the median house price for each MSOA.

As in the Google Street View analysis, we analyse images and house prices
at the Middle Layer Super Output Area (MSOA) level, where an MSOA contains
a population of between 5,000 and 15,000 inhabitants, or between 2,000 and 6,000
households, with 983 MSOAs in London (Stokes, 2012).

4.2.2 Geograph images

We retrieved Geograph data in November 2019 by using the data request form at
Geograph (n.d.-b). We accessed all images of London that had been uploaded to
Geograph since its inception in March 2005 until November 2019, as well as metadata
associated with the images, such as the Geograph website link to each image and the
date that each image was originally taken. We find that 328,014 images of London
were uploaded to Geograph’s website between March 2005 and November 2019. The
quantity of Geograph images per MSOA ranges from 8 to 14,768 with a median of
151 images per MSOA.
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Figure 4.1: Deep learning framework. We adapt the deep learning framework
from the Google Street View analysis described in Chapter 3 to infer house prices
from Geograph imagery. We obtain all Geograph images available for the Greater
London area, instead of Google Street View images, and designate each image to
an MSOA. To process each image, we use an updated version of the Places CNN
developed by Zhou et al. (2018), which we refer to as Places365. Examples of the 365
Places features identified by Places365 include ‘motel’ and ‘park’. Given an input
of an image, Places365 produces a vector of 365 feature values, rather than the 205
features produced by Places205. As in the Google Street View Places analysis, the
feature values relate to the likelihood of a given feature appearing in a given image.
We calculate the mean feature vector for each MSOA and then train an elastic net
to learn the relationship between the mean feature vector for an MSOA and the
median house price for that area. Finally, we test the estimates from the model using
a leave-one-out cross-validation approach and compare the resulting predictions to
the actual median house price for each MSOA. (continues on the following page)
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Figure 4.1: (continues from previous page) Note that we do not include SUN
attributes in this analysis. All Geograph photos are licensed for reuse under
creativecommons.org/licenses/by-sa/2.0. Front photo © David Dixon; middle photo
© Robert Lamb; back photo © Jim Osley.

As we are analysing house prices from 2015 to 2016, we wish to analyse images
taken during 2015 and 2016 too, as they will represent the environment during the
time period being analysed. The metadata attached to Geograph images make it
easy to select images taken in 2015 and 2016 only. We find that 51,918 photos of
London were taken and uploaded to Geograph between 1st January 2015 and 31st
December 2016. For this time frame, the quantity of Geograph images per MSOA
ranges from 0 to 2,821 with a median of 21 images per MSOA. As there are 30
MSOAs in London with no images available from Geograph for this time period, we
exclude these MSOAs from our analyses and focus on the remaining 953 MSOAs.

There are approximately ten times as many Google Street View photos than
there are Geograph photos available in our 2015–2016 Geograph dataset. We use
518,808 Google Street View images to estimate house prices in 2015 and 2016, and
the number of images per MSOA ranges from 88 to 2,164 with a median of 496
photos. This raises the question of whether the quantity of estimates from Geograph
imagery will be adversely impacted simply by the dramatic fall in imagery volume.
Therefore, in addition to estimating house prices in 2015 and 2016 from Geograph
images from the same time frame, we also estimate house prices in 2015 and 2016
without restricting the date on which the Geograph images were taken. This will
help us investigate whether performance improves when more images are available,
regardless of the date on which the photo was taken.

4.2.3 Places CNN

Similarly to our approach for the Google Street View analysis, we utilise Places CNN
to extract features from Geograph images. In this analysis, we apply an updated
version of Places CNN to the Geograph images (Zhou et al., 2018), specifically
the Places365-AlexNet CNN. Places365 was trained on 1.8 million images from the
Places2 database of 10 million images (Zhou et al., 2018), in contrast to the Places205
network used in the Google Street View analysis, which was trained on 2.5 million
images from the original Places database of 7 million images (Zhou et al., 2014).
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Places365 allows for 365 features to be extracted, whereas Places205 allows for
205 features to be extracted. As such, we process each of the Geograph images with
Places365 and extract the values of all 365 features into a feature vector. To process
images efficiently by processing them in parallel, we use high-performance computing
clusters managed by the Scientific Computing Research Technology Platform at the
University of Warwick. As in the Google Street View analysis, the feature values from
Places365 relate to the likelihood of a given feature appearing in a given image. Since
the feature values are normalised using a softmax activation function, the feature
values range from 0 to 1 and each feature vector sums to 1.

As Geograph imagery is outdoor imagery, we remove all 160 indoor features,
such as ‘bedroom’ and ‘staircase’. This leaves 205 outdoor features, whereas in
the Google Street View analysis, 136 outdoor features remained, excluding SUN
attributes. For each MSOA, we again calculate the mean value of the feature vectors
for all images in that MSOA.

We note that use of the newer Places network represents a change in methodol-
ogy in comparison to Chapter 3. When comparing the results between the Geograph
and Google Street View analyses, it will be necessary to consider how an update to
the methodology may have impacted performance.

4.2.4 Elastic net model

The visual characteristics of each MSOA are therefore represented by a 205 feature
vector. This vector then acts as input to the house price estimation regression
model. As in the Google Street View analysis, we use an elastic net to help us
manage correlations between the features. We train and test the elastic net model
using the leave-one-out methodology described in the Google Street View analysis
(Section 3.2.4).

4.2.5 Measuring change in house prices

We also investigate whether Geograph imagery reveals which areas have recently
seen the largest jumps in house prices. We again consider house price changes over
a decade from 2005 and 2006 to 2015 and 2016. When analysing Geograph photos
from 2015 and 2016 only, 953 MSOAs have street-level imagery available. As in the
Google Street View analysis, we rank MSOAs by median house price by setting the
highest rank of 953 to the MSOA with the highest median house price, and the lowest
rank of 1 to the MSOA with the lowest median house price. If two areas have the
same median house price, we give them both the mean rank. When analysing all
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Geograph images for London without restricting the dataset to photos taken in 2015
and 2016, we set the highest rank to 983, as images are then available for all 983
MSOAs. The change in rank is again calculated as the 2015–2016 rank minus the
2005–2006 rank. To interpret the change in ranked price, consider a change of -100.
This would indicate a decrease in ranked price by 100 places, hence a relative rank
reduction in median house price over the decade.

To model the change in rank, we again employ an elastic net, taking the 205
outdoor Places CNN features as input, and predicting the change in rank.

4.3 Results

4.3.1 Estimating local house prices in 2015 and 2016 from Geograph
images taken in 2015 and 2016

Can we build an accurate model that estimates house prices from Geograph images?
Excluding the 30 MSOAs with no Geograph images, examination of the house price
data from 2015 and 2016 reveals that median house prices for the remaining 953
MSOAs across London range from £185,000 to £1,270,000. The minimum median
house price is £115,540 higher than the minimum of £69,460 in the corresponding
Google Street View analysis, where all 983 MSOAs were considered. This difference
suggests that Geograph users are less likely to visit and photograph MSOAs with
lower house prices. This could be due to a lack of amenities in these areas, or because
Geograph photographers are less likely to live in those areas themselves.

Figures 4.2a and 4.2b display the observed and predicted median house prices
from 2015 to 2016, where a darker area represents a higher median house price.
The observed median house price is the actual median house price for each MSOA
(Fig. 4.2a), and the predicted median house price is the estimate of median house price
from Geograph photos taken in 2015 and 2016 (Fig. 4.2b). We generate estimates
using the methodology outlined in Fig. 4.1. As in the Google Street View analysis,
the observed median house price map in Fig. 4.2a shows that areas in the centre
of London tend to exhibit high house prices, whereas areas in East London tend to
exhibit relatively low house prices.
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Figure 4.2: Evaluation of estimates of London house prices during 2015
and 2016 from Geograph images. (a) Map of median house prices for each
MSOA (‘Observed’). Darker areas correspond to higher house prices. (b) Map of
median house prices for each MSOA estimated from Geograph images (‘Predicted’).
Darker areas again correspond to higher house prices. We generate estimates using
the methodology outlined in Fig. 4.1. A regression analysis shows that the elastic
net model has only limited success in estimating house prices (R2 = 0.18, N = 953,
p < 0.001). The model captures higher median house prices in the centre of London
but tends to overestimate areas outside of the centre. (c) Map of the errors in median
house price estimates for each MSOA (‘Error’). Blue denotes an underestimate and
red denotes an overestimate. Median house prices in the east of London tend to be
overestimated, whereas house prices in the west of London towards the centre tend
to be underestimated. (continues on the following page)

64



Figure 4.2: (continues from previous page) (d) Log-log plot of observed and
predicted median house prices. The red dots represent MSOAs of London and the
blue line represents where perfect predictions should fall. For areas with observed
median house prices over £1,000,000, we find that the estimates tend to be too low.
Some areas with observed median house prices under £500,000 are also strongly
underestimated. Overall, these results suggest that the features extracted from
Geograph images from 2015 and 2016 do not provide enough information to make
particularly accurate estimates of local house prices. For all maps, quantile breaks
are implemented with six bins. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains Geograph data © Geograph Project Limited and
licensed for reuse under creativecommons.org/licenses/by-sa/2.0.

We investigate whether these differences in median house price across London
can be inferred from Geograph image data. When fitting the elastic net, we find the
optimal value of l1_ratio to be 0.9999 with an α of 2.56 (to 2 decimal places). A
further regression analysis comparing the observed median house price for each MSOA
with the estimates produced by the elastic net using a leave-one-out analysis indicates
that the model has only limited success in estimating house prices (R2 = 0.18,
N = 953, p < 0.001). This is possibly because the median number of images in
each MSOA is lower for this dataset of Geograph photos taken in 2015 and 2016
compared to the Google Street View dataset. Hence, there is a lower amount of
information for each MSOA and a lack of representation in this analysis. The lack
of representation is the most likely cause for low model performance. In contrast,
the comparable Google Street View analysis (Section 3.3.1) exhibits much higher
performance (R2 = 0.56, N = 983, p < 0.001).

Furthermore, from visual inspection of the predicted median house price map
in Fig. 4.2b, we see that the model mostly captures the tendency for higher house
prices in the centre of the city and the north-west, but few nuances beyond this.
This is in contrast to the results from the corresponding Google Street View analysis,
where more detailed patterns are captured, such as lower median house prices in the
west of London.

Figure 4.2c presents the prediction errors of the model, where blue denotes an
underestimate and red denotes an overestimate of median house price. Mapping the
prediction errors reveals that median house prices in lower house price areas in the
east of London and some areas in the west of London are generally overestimated.
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Conversely, median house prices in higher house price areas in the west of London,
closest to the centre, are typically underestimated. This may be because the model
is struggling to identify anything other than the distinctive city centre architecture
of the centre of London and is therefore drifting back to a mean estimate outside of
this central area.

The model achieves a mean absolute error of £136,500 and a mean absolute
percentage error of a considerable 29.18% (both to 4 significant figures). In comparison,
the analogous Google Street View analysis achieves a mean absolute error is £97,710
and a mean absolute percentage error is 20.24% (both to 4 significant figures). Note
that this model is still an improvement over the baseline mean model, which achieves a
mean absolute error of £152,800 and mean absolute percentage errors of 32.13%. The
scatter plot of observed against predicted median house prices further illustrates the
difficulty the model experiences in capturing the variability in house prices (Fig. 4.2d).
The red dots represent MSOAs and the blue line shows where perfect predictions
should fall. The model tends to produce underestimates for areas where higher prices
are observed, and overestimates for areas where lower prices are observed. In other
words, the model does not sufficiently diverge from the mean, leading to these large
prediction errors.

Such large errors suggest that insufficient information is available from the
features extracted from the Geograph images to make accurate estimates of local
house prices. Again, this could be due to the relatively low number of images in our
dataset. The median number of images for each MSOA is 21, which is fairly low
compared to the median of 496 images in each MSOA for the Google Street View
dataset. Furthermore, 122 of 953 MSOAs have fewer than five images attached to
them and many of the areas simply do not have enough images to fully represent
them. Therefore, the features extracted would not provide enough information about
the areas, leading to large prediction errors.

Alternatively, visual information contained in Geograph imagery may not
be useful in house price estimation. Geograph images contain information on the
local neighbourhoods of houses, but perhaps such visuals are not as indicative of
house prices as other street-level imagery. The reduced number of visual features
extracted from the images may also impact the model. Although we extract more
Places features, we do not extract any SUN attributes like we did with the Google
Street View images. Their inclusion could make it easier for the model to estimate
local house prices accurately.

Figure 4.3 depicts the top 50 positive and negative elastic net coefficients
from the model. For each coefficient, the absolute value indicates how big an effect
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the feature has on house price estimates, and the sign indicates whether the effect is
positive or negative.

Since the model has some success in estimating median house prices, we would
expect positive model coefficients to represent visual features of areas with higher
median house prices and negative model coefficients to represent visual features of
areas with lower median house prices. From Fig. 4.3, we see that positive coefficients
include ‘mansion’, ‘embassy’, and ‘courtyard’, and negative coefficients include ‘in-
dustrial area’. Mansions, for example, are luxurious houses and are expensive by
definition, so are indeed likely to be found in areas with higher house prices. On
the other hand, industrial areas are usually loud and noisy and such attributes are
undesirable near residential areas, such that lower house prices in such areas might
be expected.

The model also includes a greater proportion of features than the corresponding
Google Street View model. Of the 205 outdoor features available to the Geograph
model from Places365, 191 are included (93%; Fig. 4.3). However, of the 239 outdoor
features and attributes available to the Google model from Places205 and SUN
respectively, only 68 are included (28%; Fig. 3.5).

This may be partially because the type of images available from Geograph
resemble those used to train Places CNN more closely than images from Google
Street View. The Places365-standard dataset that the Places365 CNN was trained
on includes many scenes of differing types (Zhou et al., 2018), as does the Places205-
standard dataset that the Places205 CNN was trained on (Zhou et al., 2014). Likewise,
Geograph imagery includes a variety of elements from the environment, whereas
Google Street View imagery is often only of streets and facades. Therefore, the CNN
may identify shapes and patterns more easily in Geograph imagery, and the elastic
net may consequently deem more features important. Places365 is also an updated
version of Places205, so an improvement in scene detection is to be expected.
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Figure 4.3: Top 50 elastic net coefficients for estimates of London house
prices during 2015 and 2016 from Geograph images. (continues on the
following page)
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Figure 4.3: (continues from previous page) Positive coefficients relate to visual
features that are associated with higher median house prices, and negative coefficients
relate to visual features that are associated with lower median house prices. As in
the Google Street View analysis, we train an elastic net model using the methodology
outlined in Fig. 4.1 and depict the top 50 resulting positive and negative coefficients
from the elastic net model. We find that the model has learnt to associate at least
some features in images with higher or lower median house prices in a fairly intuitive
way. For example, the features ‘embassy’, ‘courtyard’ and ‘arch’ are linked with areas
with higher median house prices, and the feature ‘industrial area’ is linked with lower
median house prices. A courtyard for instance requires a large amount of space, so
would be present in larger properties. Larger properties are often more expensive than
smaller properties, so are associated with higher house prices. Conversely, houses in
industrial areas, or on streets that resemble industrial areas, might be expected to
have lower house prices. There are also a few unexpected features that appear in
the top 50 positive and negative coefficients. A ‘desert’ is a feature that would not
be expected in London due to an incompatible climate. We discuss this further in
Section 4.3.1.

Another reason why more features are included in the Geograph model than the
Google Street View model might be that the Geograph model has had greater difficulty
in distinguishing relevant visual characteristics from irrelevant visual characteristics,
as reflected by the poorer performance of the model. Moreover, some coefficients
from the model are unexpected. For example, a ‘desert’ would not be expected in
London and neither would a ‘bamboo forest’, due to the climate in the UK being too
cold. It seems that Places365 identifies patterns and shapes resembling these features
in some Geograph images of London. To understand why Places365 attaches labels
to the images in the manner it does, we explore a selection of top scoring images for
positive and negative coefficients. Figure 4.4 displays three images that generate very
high feature values for three strongly positive and three strongly negative coefficients.
The feature values underneath each image are those extracted from the CNN, as
described in the CNN methodology (Section 4.2.3).
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Figure 4.4: Top Geograph images of London during 2015 and 2016 for
top positive and negative features. We obtain Geograph images and extract
corresponding feature vectors using the methodology outlined in Fig. 4.1. (continues
on the following page)
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Figure 4.4: (continues from previous page) From the feature vectors, we identify
three images with high feature values for the features that are most positively and
negatively related to median house prices in London according to the elastic net model.
This should help us understand what the CNN sees for each feature. Note that for
each image, the associated feature is its highest-scoring Places label. (a) The images
with a high score for the feature ‘embassy’ often contain a group of people dressed
as a marching band, and always contain buildings that look historical. Although
the images do not contain embassies, the pictured scenes do resemble scenes that
might be seen outside embassies. All photos © Robert Lamb. (b) The images with
a high score for the feature ‘plaza’ contain plazas. The label accurately reflects the
content of the images. Photos from left to right © Christine Matthews, Robert
Lamb, and Martin Bodman. (c) The images with a high score for the feature ‘alley’
contain alleys. Once again, the label is representative of the content in the images.
Photos from left to right © Basher Eyre, Basher Eyre, and Robert Lamb. (d) The
images with a high score for the feature ‘industrial area’ contain an industrial building
surrounded by a fence. Therefore, the label for the images is appropriate. Photos
from left to right © Mike Pennington, N Chadwick, and N Chadwick. (e) The
images with a high score for the feature ‘motel’ do not appear to contain motels, but
do contain visual elements that are reminiscent of a motel. For example, some images
contain long groups of buildings, such as terraced housing, with red materials, and
the middle image is focused on neon lighting, which is often found at motels. Photos
from left to right © James Emmans, Robert Lamb, and David Howard. (f) The
images with a high score for the feature ‘field (wild)’ contain sandy paths along
fields. It is not clear that the fields are particularly wild, but the label is certainly
reflective of the essence of the images. Photos from left to right © Alan Hunt, Malc
McDonald, and Robert Lamb. Generally, the images that have a high score for
a given feature have similar characteristics to each other, and are either labelled
correctly or have labels with a clear relationship to the image content. All Geograph
photos are licensed for reuse under creativecommons.org/licenses/by-sa/2.0.

Of the six example features portrayed in Fig. 4.4, four appear to be allocated
to imagery appropriately (‘plaza’, ‘alley’, ‘industrial area’, and ‘field (wild)’). For
‘embassy’ and ‘motel’, it is less clear that the label is appropriate. However, it is very
clear that there are similarities between images with the same label (e.g. ‘embassy’)
or visual similarities between the images and the concept in the label (e.g. ‘motel’).

To help us better understand how the elastic net operates, we examine which
areas in London exhibit high mean feature values for positive coefficient features,
and which areas in London exhibit high mean feature values for negative coefficients
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features. This is an extended version of our examination of the features extracted
from Google Street View imagery by Places205 (Fig. 3.3), but for features extracted
from Geograph imagery using Places365. For highly positive coefficients, we would
expect the distribution of features across London to coincide with areas of higher
median house prices.

To investigate, we use the features from Fig. 4.4 as examples. Figure 4.5 shows
a map of median house prices across London (Fig. 4.5a, as also shown in Fig. 4.2a), as
well as maps of the prevalence of features across London areas for three top positive
coefficients from the Geograph model, ‘embassy’ (Fig. 4.5b), ‘plaza’ (Fig. 4.5c), and
‘alley’ (Fig. 4.5d).

Visual inspection of the feature value distribution maps confirms that positive
coefficient features are more likely to have higher values in areas with higher median
house prices, especially in the centre of London. Figure 4.5b reveals that the areas
with visual characteristics that the CNN attaches the label ‘embassy’ to are likely
to be in the centre of London. The same holds for ‘plaza’ (Fig. 4.5c) and ‘alley’
(Fig. 4.5d). As plazas, alleys surrounded by tall buildings and scenes like those
captured in the example ‘embassy’ images (Fig. 4.4a) are more frequently found in
city centres than residential areas, this accords with intuition.

For highly negative coefficients, we would expect the distribution of features
across London to coincide with areas of lower median house prices, inversely to Fig. 4.5.
Again, we investigate using the features from Fig. 4.4 as examples. Figure 4.6 shows
a map of median house prices across London (Fig. 4.6a), in addition to maps of the
prevalence of features across London areas for the three top negative coefficients from
the Geograph model, ‘industrial area’ (Fig. 4.6b), ‘motel’ (Fig. 4.6c), and ‘field (wild)’
(Fig. 4.6d).

Examination of all three feature value distribution maps confirms that negative
coefficient features tend to have lower values in areas with higher median house prices,
and vice versa. Both industrial areas and fields are found in areas with a large amount
of space, which are often outside of the city centre. Additionally, scenes similar to
those in the example ‘motel’ tend to be found in residential areas, rather than city
centres. Therefore, these maps also accord with intuition.
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Figure 4.5: Prevalence of high positive coefficient features in London
from Geograph images taken in 2015 and 2016. (a) Map of median house
prices for each MSOA (‘Observed’), as also shown in Fig. 4.2a. Darker areas relate
to higher house prices. (b) Map of mean feature values for the feature ‘embassy’.
The feature values are extracted via the methodology outlined in Fig. 4.1. Since
positive coefficients relate to visual features that are associated with higher median
house prices, we would expect the features to have higher feature values in areas that
correspond to higher median house prices. For all of the following maps, darker areas
correspond to higher feature values, and lighter areas correspond to lower feature
values. (continues on the following page)
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Figure 4.5: (continues from previous page) Maps are again presented at MSOA
granularity. (c) Map of mean feature values for the feature ‘plaza’. (d) Map of mean
feature values for the feature ‘alley’. Scenes similar to those that the CNN labels as
‘embassy’ are often found in city centres, and less often in residential areas, as are
plazas and alleys surrounded by tall buildings. As such, the feature value distribution
maps follow intuition, since areas in the centre of London with higher median house
prices tend to coincide with higher feature values for these features. Example images
associated with high feature values for these features by the CNN can be found in
Figs. 4.4a, 4.4b, and 4.4c respectively. For all maps, quantile breaks are implemented
with six bins. Contains National Statistics data © Crown copyright and database
right 2011. Contains Ordnance Survey data © Crown copyright and database right
2011. Contains Geograph data © Geograph Project Limited and licensed for reuse
under creativecommons.org/licenses/by-sa/2.0.

4.3.2 Estimating local house prices in 2015 and 2016 from the
complete dataset of Geograph images

A key issue with restricting our analysis to Geograph images from 2015 and 2016
only is that we do not have a very high median number of images for each MSOA
in London. Thus, to understand whether differences in median house prices can be
inferred more accurately with more Geograph image data, we also estimate median
house prices across London from the complete set of Geograph images. As described
in Section 4.2.2, the full dataset contains 328,014 images uploaded to Geograph
between 2005 and 2019, with a median of 151 images per MSOA, where all 983
MSOAs are represented. Recall that for our initial Geograph analysis (Section 4.3.1),
we analyse 51,918 images with a median of 21 images per MSOA.

An important point to note is that the images in the complete dataset include
images beyond 2016 up to 2019, whereas the house price data we consider are from
2015 and 2016 to maintain parity with the corresponding Google Street View analysis.
This means that, in essence, 46,962 images from the future (14% of the dataset)
are being used to produce the estimates of house prices. Nevertheless, this analysis
should allow us to get some initial insight into whether having more Geograph images
available would improve the performance of this method.
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Figure 4.6: Prevalence of features with high negative coefficients in London
from Geograph images taken in 2015 and 2016. (a) Map of median house
prices for each MSOA (‘Observed’), as also shown in Fig. 4.2a. Darker areas relate to
higher house prices. (b) Map of mean feature values for the feature ‘industrial area’.
The feature values are extracted via the methodology outlined in Fig. 4.1. Since
negative coefficients relate to visual features that are associated with lower median
house prices, the features should have lower feature values in areas that correspond
to higher median house prices. For all of the following maps, darker areas correspond
to higher feature values, and lighter areas correspond to lower feature values. Maps
are again presented at MSOA granularity. (c) Map of mean feature values for the
feature ‘motel’. (d) Map of mean feature values for the feature ‘field (wild)’. Scenes
resembling elements of the example ‘motel’ are often found in residential areas rather
than city centres, and both industrial areas and fields require a large expanse of space
that tends to be outside of city centres. (continues on the following page)
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Figure 4.6: (continues from previous page) Here we see particularly that the features
have lower values in the centre of London, where house prices tend to be higher. We
also observe higher values in some specific areas with particularly low house prices:
for example, ‘industrial area’ has particularly high values towards the far west and
far east of London. Example images associated with high feature values for these
features by the CNN can be found in Figs. 4.4d, 4.4e, and 4.4f respectively. For all
maps, quantile breaks are implemented with six bins. Contains National Statistics
data © Crown copyright and database right 2011. Contains Ordnance Survey data
© Crown copyright and database right 2011. Geograph data © Geograph Project
Limited and licensed for reuse under creativecommons.org/licenses/by-sa/2.0.

We present the observed and predicted median house prices from 2015 to 2016
in Fig. 4.7a and Fig. 4.7b. Note that the scales are slightly different to Fig. 4.2a and
Fig. 4.2b, due to the fact that the estimates are different and we use quantile breaks
for the maps. During the process of fitting the elastic net, we find the optimal value
of l1_ratio to be 0.99999 with an α of 0.57 (to 2 decimal places). Again, we conduct
a regression analysis comparing the observed median house price for each MSOA
with the estimates produced by the elastic net using leave-one-out analysis. We find
that this model is a considerable improvement on the model using Geograph photos
restricted to 2015 and 2016 only (R2 = 0.18, N = 953, p < 0.001) in Section 4.3.1,
as this models results in a considerably larger coefficient of determination (R2 = 0.44,
N = 983, p < 0.001). Figure 4.7b also highlights the substantial improvement in
estimating median house prices visually, as more details of the outskirts of London
are identified in comparison to the analysis restricted to photos from 2015 and 2016
only (Fig. 4.2). For instance, the areas with lower median house prices in the east
and west of London can be spotted easily.
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Figure 4.7: Evaluation of estimates of London house prices during 2015
and 2016 from all available Geograph images. (a) Map of median house
prices for each MSOA (‘Observed’). (b) Map of median house prices for each MSOA
estimated from Geograph images (‘Predicted’). Darker areas correspond to higher
house prices in both maps. Again, we generate estimates using the methodology
outlined in Fig. 4.1. We find that the performance of the model improves considerably
in comparison to the analysis that considered Geograph images from 2015 and 2016
alone (R2 = 0.44, N = 953, p < 0.001). In particular, the model appears to perform
better at identifying areas of higher median house prices in south-west, north-west,
and south-east of London. (c) Map of the errors in median house price estimates for
each MSOA (‘Error’). Blue denotes an underestimate and red denotes an overestimate.
Median house prices in the east of London tend to be overestimated, whereas house
prices in the south-west of London towards the centre tend to be underestimated,
but the size of the errors is smaller than those from the Geograph analysis restricted
to images from 2015 and 2016 only (Fig. 4.2). (continues on the following page)
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Figure 4.7: (continues from previous page) (d) Log-log plot of observed and
predicted median house prices. The red dots represent MSOAs of London and the
blue line represents where perfect predictions should fall. Compared to the Geograph
analysis using only 2015 and 2016 photos, the improvement in performance is clear
and the difference in R2 is reflected in the plot. We find that median house price
estimates over £1,000,000 still tend to be low, but not as low as those from the
aforementioned restricted Geograph analysis. For all maps, quantile breaks are
implemented with six bins. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains Geograph data © Geograph Project Limited and
licensed for reuse under creativecommons.org/licenses/by-sa/2.0.

The prediction errors of the model are shown in Fig. 4.7c. Median house
prices in areas in the east of London and some areas in the west of London are still
overestimated. Furthermore, median house prices in the north-west of London and
south-west of London are generally underestimated. Despite this, the errors are
notably smaller than those from the restricted Geograph analysis overall. The mean
absolute error is £115,800 and the mean absolute percentage error is 24.75% (both
to 4 significant figures). In contrast, the mean absolute error was £136,500 and the
mean absolute percentage error was 29.18% for the Geograph analysis considering
photos from 2015 and 2016 alone (both to 4 significant figures). However, for the
analogous Google Street View analysis, the mean absolute error was £97,710 and
the mean absolute percentage error was 20.24% (both to 4 significant figures). As
such, the model using Google Street View photos outperforms both of the Geograph
models.

Figure 4.7d displays the scatter plot of observed median house prices against
predicted median house prices, and the improvement in median house price estimation
in comparison to the analysis considering Geograph photos from 2015 and 2016 alone
is highlighted once more. In summary, our results provide some initial evidence that
increasing the number of images in a house price estimation model leads to improved
performance. However, neither model using Geograph photos performs as well as the
corresponding Google Street View model. This may be due to a greater number of
Google Street View photos being available for analysis, as we used 518,808 Google
Street View images and the median number of photos in each MSOA was 496. In
comparison, we use 328,014 Geograph images for the analysis using all Geograph
images, and the median number of photos in each MSOA is 151.
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Figure 4.8 portrays the top 50 elastic net coefficients from the model. The
coefficients are very similar to those extracted from the Geograph analysis restricted
to images from 2015 and 2016 only, but occur in a different order. In other words, the
relative size of the impact of features is dissimilar to the restricted Geograph analysis
but similar features are positively and negatively associated with median house prices.
As an example, ‘courtyard’ is the fourth largest positive coefficient in the restricted
Geograph analysis (Fig. 4.3), but the top coefficient when considering all Geograph
images in the analysis. Another example is the feature ‘lawn’, which is the fourth
largest negative coefficient when only considering Geograph photos from 2015 and
2016 in the analysis, but the 44th largest negative coefficient when considering all
Geograph images in the analysis.

Certain features are no longer present in the top 50 coefficients at all, such as
‘mansion’ and ‘kennel’. However, a large proportion of available features are present
overall. Of the 205 outdoor features available to the model, 187 are included (91%).
It seems that using more images may result in fewer coefficients in the model, albeit
only four fewer coefficients in comparison to the restricted Geograph model. The
corresponding Google Street View model includes far fewer coefficients than both
Geograph models, but also performs more accurately. This could be a result of having
a greater median number of photos per MSOA. If there are more images to gain
information from, the model can draw upon a more comprehensive visual landscape
of London, so the most relevant visual features can be identified more precisely.

4.3.3 Estimating changes in local house price rank from 2005 and
2006 to 2015 and 2016 using Geograph images taken in 2015
and 2016

Do areas that have seen the greatest relative increases in median house prices have
distinctive visual characteristics? As in Section 3.3.2, we calculate a change in median
house price rank for each MSOA in London by using the methodology described in
Section 4.2.5. We begin by only considering images taken and uploaded to Geograph
in 2015 and 2016, and again analyse changes in house prices between 2005–2006 and
2015–2016. The changes in median house price rank range from -424.5 and 522.
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Figure 4.8: Top 50 elastic net coefficients for estimates of London house
prices during 2015 and 2016 from all Geograph images. Positive coefficients
reflect features that are associated with higher median house prices, and negative
coefficients reflect features that are associated with lower median house prices. We
train an elastic net model using the methodology outlined in Fig. 4.1 and depict
the resulting top 50 positive and negative coefficients from the elastic net model.
(continues on the following page)
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Figure 4.8: (continues from previous page) The coefficients are similar to those
extracted from the Geograph model considering photos from 2015 and 2016 only
(Fig. 4.3), but occur in a different order. For instance, ‘courtyard’ is the fourth largest
positive coefficient in the aforementioned Geograph analysis but the top coefficient
when considering all Geograph images in the analysis.

The observed changes in median house price rank are shown in Fig. 4.9a. The
estimated changes in median house price rank are generated via the methodology
shown in Fig. 4.1 and depicted in Fig. 4.9b. The observed change in rank is the actual
change in rank for each MSOA, and the predicted change in rank is the estimate of
change in rank from Geograph photos taken in 2015 and 2016. For both maps, dark
blue indicates a decrease in ranked price and dark red indicates an increase in ranked
price between 2005–2006 and 2015–2016. When fitting the elastic net model, we find
the optimal value of l1_ratio in this elastic net model to be 0.999999 with an α of
0.14 (to 2 significant figures).

Highlighted in the observed change in rank map (Fig. 4.9a) is the fact that
areas surrounding the centre of London tend to decrease in ranked price, and areas in
the centre of London, particularly towards the east, tend to increase in ranked price,
as in the corresponding Google Street View analysis (Section 3.3.2). Comparing the
maps of observed and predicted changes demonstrates that the elastic net model
does capture some of this pattern. However, conducting a regression analysis after
applying leave-one-out cross-validation underlines that the success of the model in
estimating the true changes in rank is limited (R2 = 0.11, N = 953, p < 0.001).
This may again be due to the relatively low median number of Geograph photos per
MSOA when considering imagery from 2015 and 2016 only.

81



(c)

(d)

(a)

(b)

O
b

se
rv

e
d

E
rr

o
r

Error

-550 -70 -30 0 30 70 550

Change In Rank

IncreaseDecrease

P
re

d
ic

te
d

-550 -70 -30 0 30 70 550

Change In Rank

IncreaseDecrease

-520 -103 -40 0 40 103 520

OverestimateUnderestimate

-300 0 300
-600

-300

300

600

Observed Change In Rank

P
re

d
ic

te
d

 C
h

a
n

g
e

 In
 R

a
n

k

600-600

0

Figure 4.9: Inferring changes in house prices in London using Geograph
images from 2015 and 2016. (a) Map of change in median house prices between
2005–2006 and 2015–2016 for each MSOA (‘Observed’). We use the methodology
described in Section 4.2.5 to obtain a change in rank for each MSOA in London.
As with the corresponding Google Street View analysis (Fig. 3.9), blue denotes a
decrease in ranked price and red denotes an increase in ranked price over the decade.
(b) Map of change in median house prices for each MSOA estimated from Geograph
images (‘Predicted’). We generate estimates using the methodology outlined in
Fig. 4.1. Again, blue denotes a decrease in ranked price and red denotes an increase
in ranked price over the decade. A regression analysis shows that the model has very
limited success in capturing the observed patterns in house price changes (R2 = 0.11,
N = 953, p < 0.001). (continues on the following page)
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Figure 4.9: (continues from previous page) Visual inspection of the maps of observed
and predicted changes in the median house price rank of local areas reveals that the
elastic net model successfully infers greater relative increases in house price in the
centre of London but generally underestimates the size of this effect. It does not
capture many nuances in the spatial pattern beyond this. (c) Map of the errors
in estimates of change in median house price rank for each MSOA (‘Error’). Blue
denotes an underestimate and red denotes an overestimate. The map again highlights
that the model has underestimated the rise in ranks of areas in several parts of
London, in particular towards the east, and has similarly not captured the full size of
the fall in ranks in parts of outer London. (d) Scatter plot of observed and predicted
change in rank. The red dots represent MSOAs of London and the blue line represents
where perfect predictions should fall. Again, we see that the model has not captured
a lot of the variation in changes in ranked house price. For all maps, quantile breaks
are implemented with six bins. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains Geograph data © Geograph Project Limited and
licensed for reuse under creativecommons.org/licenses/by-sa/2.0.

Figure 4.9b demonstrates that the model correctly infers that areas in the
outskirts of London decrease in ranked price and areas in the centre of London
increase in ranked price, but the size of this effect is often underestimated. The
model is unable to capture any further nuances in the spatial pattern. Visually,
the prediction errors in Fig. 4.9c are almost an inverse of Fig. 4.9a; i.e. they show
that the notable climb in rank in parts of the centre of London towards the east is
underestimated, and highlight the inability of the model to capture much of the fall
in rank in many parts of the outskirts of London. The model is also unable to capture
a lot of the variation in the ranks, as is depicted in the scatter plot of observed versus
predicted change in rank (Fig. 4.9d), and the change in rank is always estimated to
fall between -280 and 280. This indicates that the information available to the model
from Geograph images from 2015 and 2016 is not enough to make accurate estimates
of local changes in house prices.

Figure 4.10 exhibits the elastic net coefficients from the model. Positive
coefficients are connected to increases in median house price rank, and negative
coefficients are connected to decreases in median house price rank. We note that the
poor performance of the model appears to be accompanied by a very low number of
non-zero coefficients being identified.
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Figure 4.10: Elastic net coefficients for estimated changes in median house
prices in London from Geograph images taken in 2015 and 2016. We rank
London’s MSOAs using the approach detailed in Section 4.2.5 and train an elastic
net model to estimate the change in median house price rank between 2005–2006 and
2015–2016 using the methodology outlined in Fig. 4.1. The resulting coefficients from
the elastic net model are depicted for all features where the coefficient is not zero.
Positive coefficients reflect features that are associated with an increase in ranked
price and negative coefficients reflect features that are associated with a decrease in
ranked price. We note that far fewer non-zero coefficients are identified by this model.
We also find that features associated with higher median house prices in the Geograph
model considering images from 2015 and 2016 only (Fig. 4.3) are often associated
with increases in median house price rank, for example ‘embassy’. Similarly, features
associated with lower median house prices in the restricted Geograph analysis are
often associated with decreases in median house price rank, for example ‘industrial
area’.

We find that a number of features associated with higher and lower median
house prices in the Geograph analysis restricted to photos from 2015 and 2016 alone are
also associated with increases and decreases in median house price rank respectively.
However, in such cases, the sizes of the effects are different. Example features include
the positive coefficient ‘embassy’ and the negative coefficient ‘industrial area’.

This result differs from what we see with the coefficients from the analogous
Google Street View analysis. There, we found that coefficients that are positive when
inferring median house prices are often negative when inferring the change in rank,
and vice versa. It is not immediately clear what the reason for this difference is. We
therefore investigate whether this pattern still holds when making use of the entire
Geograph dataset.
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4.3.4 Estimating changes in local house price rank from 2005 and
2006 to 2015 and 2016 using the complete dataset of Geograph
images

From our previous Geograph analyses, we find that using a larger number of Geograph
images to estimate median house prices across local areas of London leads to a more
accurate house price estimation model. Is this also the case when estimating changes
in median house prices across local areas of London? We begin our investigation by
using the complete set of Geograph images once more to estimate the changes in
median house price rank using the methodology described in Section 4.2.5.

Figure 4.11a depicts the observed change in rank, and Fig. 4.11b depicts the
predicted change in rank from all of our Geograph images. Note that the scales are
slightly different to those in the restricted Geograph analysis (Fig. 4.9) because we
use quantile breaks in all maps and we need to account for different house price
estimates. As we are using all Geograph images, we analyse 983 MSOAs, and again,
the changes in ranked price range between -424.5 and 522. After deploying the elastic
net, we find the optimal value of l1_ratio to be 0.99999 with an α of 0.024 (to 2
significant figures).

Based on the predicted change in rank map, an improvement in model perfor-
mance is clear over the Geograph model restricted to photos from 2015 and 2016 only
(Section 4.3.3). A regression analysis applying leave-one-out cross-validation supports
this, although the model still has limited success in estimating true changes in rank
(R2 = 0.18, N = 983, p < 0.001). It still overgeneralises, estimating most increases
in rank around the centre of London, but to a slightly lesser degree than the restricted
Geograph model. Furthermore, the prediction errors (Fig. 4.11c) are smaller than
those from the restricted Geograph analysis, and the elastic net model can capture
slightly more variations in the changes. As seen in the scatter plot of observed versus
predicted change in rank (Fig. 4.11d), the change in rank is now inferred to range
between -300 and 300, rather than between -280 to 280 as for the restricted Geograph
analysis. Overall, model performance is still poor, but including more image data in
the model does improve the performance relative to the restricted Geograph analysis.
Furthermore, the model performs worse than the corresponding Google Street View
analysis (R2 = 0.27, N = 983, p < 0.001; Section 3.3.2), but the fall in performance
in comparison to the corresponding Google Street View analysis is similar to the fall
in performance between the Google Street View and Geograph analyses for median
house price estimation. Again, it is possible that the lower median number of images
per MSOA is the cause of the discrepancy between the model performances.
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Figure 4.11: Inferring changes in house prices in London from all Geograph
images. (a) Map of change in median house prices between 2005–2006 and 2015–2016
for each MSOA (‘Observed’). Following the methodology outlined in Section 4.2.5,
we obtain a change in rank for each MSOA in London. (b) Map of change in median
house prices for each MSOA estimated from Geograph images (‘Predicted’). We
generate estimates using the methodology outlined in Fig. 4.1. For both maps, dark
blue reflects a decrease in ranked price and dark red reflects an increase in ranked price.
The model is an improvement on the corresponding Geograph analysis considering
images from 2015 and 2016 only (Section 4.3.3). However, it still overgeneralises
the change in rank across London, mostly inferring relative increases in price in the
centre of London. (continues on the following page)
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Figure 4.11: (continues from previous page) (c) Map of the errors in estimates
of change in median house price rank for each MSOA (‘Error’). Blue denotes an
underestimate and red denotes an overestimate. The errors are less than those
from the restricted Geograph analysis, but the areas that are underestimated and
overestimated are similar. (d) Scatter plot of observed and predicted change in rank.
The red dots represent MSOAs of London and the blue line represents where perfect
predictions should fall. The change in rank estimates are better than those from the
restricted Geograph analysis, now ranging between -300 and 300 and rank moving
away from the mean, but model performance is still poor. A regression analysis
confirms this (R2 = 0.18, N = 983, p < 0.001). For all maps, quantile breaks are
implemented with six bins. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains Geograph data © Geograph Project Limited and
licensed for reuse under creativecommons.org/licenses/by-sa/2.0.

Figure 4.12 depicts the elastic net coefficients from the model. Again, fewer
coefficients are non-zero when estimating the change in rank rather than median
house prices. However, there are more non-zero coefficients for this model than for
the restricted Geograph analysis (Fig. 4.10). It could be that increasing the number
of images attached to each MSOA in London allows the elastic net to find more
important connections between features and changes in rank.

As for the analogous Google Street View analysis (Section 3.3.2), we find that
positive coefficients associated with higher median house prices in the Geograph model
considering all photos (Section 4.3.2) are generally associated with decreases in ranked
median house price here, and sometimes vice versa. We compare the coefficients
between the models and find that the example features ‘slum’ and ‘building facade’
are negative coefficients when estimating median house prices but positive coefficients
here. Similarly, the example features ‘forest road’ and ‘formal garden’ are positive
coefficients when estimating median house prices but negative coefficients here.
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Figure 4.12: Elastic net coefficients for estimated changes in median house
prices in London from all Geograph images. Using the approach detailed in
Section 4.2.5, we rank the MSOAs in London and calculate the change in median
house price rank between 2005–2006 and 2015–2016 for each MSOA. We then estimate
these changes using the method outlined in Fig. 4.1. Positive coefficients reflect
features that are associated with an increase in ranked house price (such that the
area became relatively more expensive) and negative coefficients reflect features that
are associated with a decrease in ranked house price. As was the case with the
corresponding Google Street View analysis (Section 3.3.2), we discover that positive
coefficients associated with higher median house prices are associated with decreases
in ranked median house price. For example, if we compare the Geograph analyses
using all photos, we find that the coefficient ‘slum’ is positive when estimating median
house prices but negative when estimating changes in ranked median house price.
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This phenomenon is similar to what we find in the analogous Google Street
View Model. Again, some areas may have high median house prices but may not have
climbed as highly in the ranks, whereas other areas may have low median house prices
but have climbed high in the ranks. The swap in polarity of some of the coefficients
would then reflect these areas. Moreover, it seems likely that the Geograph analysis
using images from 2015 and 2016 only does not show this phenomenon simply due to
an insufficient amount of Geograph images, since including more image data in the
model, and consequently increasing the number of MSOAs that are well represented,
does lead to this pattern.

4.4 Discussion

In this chapter, we try to determine whether local house prices across London can be
inferred from an alternative street-level image source to Google Street View: namely,
Geograph image data. Geograph images contain additional information on local
neighbourhoods’ off-road scenes such as parks, canals, and mountains, rather than
focusing solely on streets. Our main analyses look at inferring median house prices in
London from 2015 and 2016, but we also investigate the relative changes in median
house prices in London over a decade. We conduct these analyses for Geograph
photos taken in the same period as our house price data, specifically 2015 and 2016,
as they are representative of the environment during that time. Furthermore, we
look at our full dataset of Geograph images to see if we can improve the accuracy of
the models.

We find that our model achieves limited success in estimating median house
prices across areas in London from Geograph images taken between 2015 and 2016.
The prediction errors from the model are large, and the model does not appear to
gain enough information from the images to make accurate estimates. The lower
volume of images per MSOA when considering Geograph photos taken between 2015
and 2016 in comparison to Google Street View photos could explain why we see
such poor model performance. We also attempt to estimate local house prices from
all Geograph images, without restricting the date on which the photo was taken to
2015 and 2016. This leads to an improvement in performance, but the estimates
remain less accurate than those from the corresponding Google Street View model.
It would therefore seem that including more image data improves the performance of
the model.

Similar observations can be made for the model estimating relative changes
in local house prices across London over a decade. When using Geograph photos
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from 2015 and 2016, we find that the model has only limited success in inferring
changes in median house price rank. We investigate whether performance improves if
we consider all Geograph images, without restricting the date on which the photo
was taken to 2015 and 2016. We find that this does indeed improve performance, but
the model still does not perform as well as the corresponding Google Street View
model. The difference in performance between the Google Street View model and the
Geograph models may be due to the discrepancy in the number of photos analysed,
as a greater number of Google Street View photos were analysed in comparison to
the number of Geograph photos analysed.

In fact, the drop in accuracy when estimating changes in median house price
rank instead of estimating median house prices is the same, regardless of whether
Google Street View or Geograph images are used. Greater success could perhaps
be achieved by comparing changes in images from 2005 and 2006 to 2015 and 2016.
Although the Geograph dataset does have images from 2005 and 2006, it does not
have a sufficient quantity of images to generate accurate estimates from. Fortunately,
the amount of image data generated grows year on year, so it is likely that more
Geograph data will be available in the future. Hence, a potential further step would
be to estimate relative changes in local house prices at a future date with images
from two well-represented time periods.

Another point to note is that the median house price changes are not normally
distributed, so the models struggle with extreme values. Specifically, the distribution
of changes in local house price rank is heavy-tailed, which reduces the accuracy of the
model. As mentioned when discussing the Google Street View analyses (Section 3.4),
a possible future step would be to change the type of model we use for estimating
the changes in median house price rank to take the heavy-tails into account. As
mentioned in the Google Street View chapter (Section 3.4), a neural network could
be designed and used to estimate changes in ranked price.

In conclusion, we explore the use of a different large-scale street-level image
dataset in conjunction with deep learning tools to infer local house prices and changes
in local house prices. Would such inferences also be possible from internal images
of houses? The visual information available from indoor imagery is quite distinct
from Google Street View and Geograph. In Chapter 5, we investigate this question
further.
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Chapter 5

Inferring house prices from Zoopla
images

5.1 Introduction

Both Chapter 3 and Chapter 4 demonstrate that we can successfully use information
from outdoor imagery of London to infer local house prices. However, millions of
images of the interior of houses are now also available. This is a result of the rise
in property marketing websites, which has lead to huge swathes of data concerning
the sales of properties, as estate agents and homeowners advertise their houses via
these websites. When determining the value of a house, the interior characteristics
undeniably contribute towards our judgement. In this chapter, we therefore investigate
whether indoor imagery would be useful in a house price estimation model too.

For these analyses, we require a rich source of photographs of housing interiors,
such as those available from Zoopla. The popular real estate website provides a
platform for estate agents to advertise their properties, and those looking to find a
place to live can then filter through the properties to find their homes. From the
advertisements, Zoopla have been able to collect data regarding housing rentals and
sales since their launch in 2008. Their data include substantial volumes of internal
and external photos of houses, as well as house prices and rental values for properties.

Almost every house advertised on Zoopla contains multiple photos of the
interiors of the house, since most houses have multiple rooms. Furthermore, Zoopla
is frequently updated with properties from all across the UK, including London.
Some properties are even advertised on the website multiple times over the years.
Zoopla photos of the interiors of houses for sale could therefore potentially provide
an alternative perspective on local house prices and their evolution.
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Consequently, this chapter aims to combine the sheer volume of Zoopla images
of houses in London with deep learning techniques to ask the following questions:

1. Can we automatically infer house prices from indoor Zoopla images?

2. Can we automatically identify areas which have recently seen relatively high
increases in house prices from indoor Zoopla images?

3. How does the performance of the house price estimation methodology using
indoor Zoopla images differ to the performance when using Geograph and
Google Street View images?

5.2 Data and methods

5.2.1 House price data

In this chapter, we evaluate whether we can develop house price estimation models
by analysing images of the interior of houses using the methodology outlined in
Fig. 5.1. We then compare the results to those obtained from our outdoor image
sources, Google Street View (Chapter 3) and Geograph (Chapter 4). For maximum
comparability, we focus on property transactions from 2015 and 2016, and use the
same house price data as we did for the Google Street View and Geograph analyses.
Again, the house price data are skewed with a long positive tail, so we calculate the
median house price for each MSOA in London.

Once more, we analyse both images and house prices at the Middle Layer
Super Output Area (MSOA) level, where an MSOA contains a population of between
5,000 and 15,000 inhabitants, or between 2,000 and 6,000 households, with 983
MSOAs in London (Stokes, 2012).

5.2.2 Places CNN

As in the Geograph analysis, we extract features from our images using Places365.
Each Zoopla image is processed with Places365 and for each image, we extract the
values of 365 scene features into a feature vector. Since we are manipulating a
large dataset, we use high-performance computing clusters managed by the Scientific
Computing Research Technology Platform at the University of Warwick to process the
images rapidly and efficiently by processing them in parallel. As in earlier analyses,
the feature values extracted from Places365 for each image indicate the likelihood of
each feature appearing in a given image. The feature values range from 0 to 1 and
the feature vector sums to 1.
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Figure 5.1: Deep learning framework. We adapt the deep learning framework
from the Geograph analysis described in Chapter 4 to infer house prices from Zoopla
imagery. We access all unique Zoopla images for house sales across the Greater
London area from our dataset. We then allocate each Zoopla image to an MSOA
and process each image using the Places365 CNN (Zhou et al., 2018). As in the
Geograph analysis, given an input of an image, Places365 produces a vector of 365
feature values that indicate how likely it is that each of the Places features is present
in the image. Example features include ‘bedroom’ and ‘yard’. We then calculate the
mean feature vector for each MSOA and train an elastic net to learn the relationship
between the mean feature vector and the median house price of that MSOA. To
test the estimates from the model, we use leave-one-out cross-validation and then
compare the resulting predictions to the actual median house price for each MSOA.
Contains images from Zoopla Limited, © 2018. Zoopla Limited. Economic and
Social Research Council. Zoopla Property Data 2018. University of Glasgow - Urban
Big Data Centre.
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Unlike Google Street View and Geograph, where the images only contain
outdoor visual information, both indoor and outdoor imagery is available from the
Zoopla dataset. The images depict both the externals of a property, including building
facades and gardens, and the internals of a property, such as a bedroom or a kitchen.
Therefore, we create two subsets of the larger dataset, an indoor dataset and an
outdoor dataset, so that we can initially focus specifically on the value of visual
information. We describe these datasets further in Section 5.2.3.

Places scene features are all marked as ‘indoor’ or ‘outdoor’. The images in
the outdoor Zoopla dataset only contain outdoor visuals, whereas the images in the
indoor dataset only contain indoor visuals. The complete Zoopla dataset contains
all visual information available from our Zoopla data. To ensure that we are using
appropriate features when analysing the images in the indoor dataset, we remove 205
outdoor features and are left with a feature vector of 160 indoor features. Conversely,
for each image in the outdoor dataset, we remove 160 indoor features and are left
with a feature vector of 205 outdoor features. We consider both indoor and outdoor
features for the dataset containing both indoor and outdoor images.

In each of the three datasets, there are multiple images associated with each
MSOA in London. Therefore, to obtain visual information at MSOA level for each
dataset, we calculate the mean value of the feature vectors for all images in the
dataset in each MSOA. More precisely, for each feature in each MSOA, we calculate
the mean feature value from all images in the dataset that fall within that MSOA
and build a mean feature vector for the MSOA comprising all mean feature values.

5.2.3 Zoopla images

We obtained Zoopla data from the Urban Big Data Centre. The properties included
in the dataset are specifically those that go on the market. Details for each property
include the first and last marketed date, whether the property is a rental or for
sale, and a list of links to images of the property. The data cover advertisements of
houses marketed up until June 2018, which was when we obtained the data. The
data also include the dates on which the properties were first marketed, which start
from January 2003.

Since we are estimating local house prices, we focus on properties advertised
for sale, rather than those available for rental. We initially wanted to estimate local
house prices in 2015 and 2016 using images from the same time frame, as with the
Geograph analysis (Section 4.3.1). However, we find that a large volume of first and
last marketed dates are missing in the Zoopla dataset. Some entries in the dataset
had both dates, some had no dates, but many had either the first marketed date or
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the last marketed date. We did not match a property to a date using one of these
subsets of dates, as we would lose too much of the dataset. For example, 1,163,020
entries in the dataset were sales and 703,798 of those entries (61%) had image data
available. Of those 703,798 entries, 154,225 (22%) of the entries had first marketed
dates in 2015 and 2016, 212,335 (30%) of the entries had last marketed dates in 2015
and 2016, and only 137,412 (20%) of the entries had both first and last marketed
dates in 2015 and 2016. In Chapter 4, we found that using more image data in a
house price estimation model improves model performance. Therefore, we want to
ensure that we have a large enough sample of properties and images to draw accurate
conclusions from.

Furthermore, we find that numerous entries in the dataset are exactly the
same except for the first or last marketed date and marketed price. The marketed
dates usually follow on from each for a given property, or the dates are at least
within a month of each other. For example, one property (ID 2466305) has an entry
with a first marketed date of 5th January 2016, 16:07, and a last marketed date
of 17th February 2016, 19:03. The same property then has another entry with a
first marketed date of 17th February 2016, 21:08, and a last marketed date of 12th
May 2016, 18:20. The price stated also differs for these two entries, as the price
is initially £660,000, but increases to £685,000. Therefore, we establish that each
time an advertisement is updated, it creates a new entry in the raw Zoopla dataset.
Additionally, some of the properties are not in the HM Land Registry Price Paid
Data (HM Land Registry, 2016), suggesting that some properties were advertised on
Zoopla but did not sell. As such, many properties are represented multiple times in
the dataset with different marketed prices.

There are alternative ways of tackling the issues of missing and duplicate data
in the Zoopla dataset. For example, where there appear to be multiple entries in
the Zoopla dataset, we could use the latest last marketed date, and where there is
no last marketed date, we could use the first marketed date instead. However, this
would add noise to the data and it would still be unclear which time frame the entry
belongs to. For instance, if a property is on the market for more than a year and we
are analysing properties last marketed in a specific year, the property may not be
included in the analysis if the first marketed date is before the specified year, but
the property may in fact have been last marketed in the specified year. As such, we
would lose some information that could be valuable in our analysis.

In practice, if the data associated with a house advertised on Zoopla were
made available as soon as the advert was released, the dates could be inferred from
these streaming data. Here, where we have access to a corpus of historical Zoopla

95



data but less information on dates, we focus on determining whether any relationships
can be found between Zoopla data and house prices, whilst largely ignoring the dates
associated with the photos as we did for the full Geograph analysis in Chapter 4. We
discuss this further in Section 5.4.

We start by identifying all unique properties from all time periods and access
their associated photos to build our Zoopla dataset. Due to the large quantity of
images available to access from Zoopla, we use the high-performance computing
clusters managed by the Scientific Computing Research Technology Platform at the
University of Warwick to retrieve them in a fast and efficient manner by retrieving
the images in parallel. In total, we retrieve 3,727,890 unique Zoopla images relating
to 478,948 advertisements. As described in the previous section, both indoor and
outdoor imagery is available from the Zoopla dataset. Therefore, we can create two
subsets of the larger dataset, an indoor dataset and an outdoor dataset, which will
allow us to focus specifically on the value of indoor visual information.

The images are not labelled as indoor or outdoor, so we need to automatically
determine their types. To automatically recognise whether an image is of the interior
or exterior of a house, we take inspiration from the methodology implemented by
Zhou et al. (2018) to determine the accuracy of Places365. When the Places365 CNN
classifies an image, it actually determines a probability for each feature that refers to
how confident it is that the feature label is the true one. If the true classification is
among the top five features with the highest probabilities, then Zhou et al. (2018)
deem the classification to be accurate. This method is known as the ‘Top-5 accuracy’
method. They also look at the ‘Top-1 accuracy’ to see if the feature with the highest
probability is correct. For the variation of Places365 we use for our analyses, namely
Places365-AlexNet, their testing reveals a Top-1 accuracy of 53.31% and a Top-5
accuracy of 82.75%. Since the Top-5 accuracy is substantially larger than the Top-1
accuracy, Zhou et al. (2018) consider Top-5 accuracy to be the more suitable measure
of scene classification performance.

As such, we start by selecting the top five features extracted by Places365
that exhibit the highest feature values for each of the images in our dataset. Next,
we calculate how many of the top five features are indoor features, since each feature
label itself is labelled as indoor or outdoor. If three or more of the top five features
are indoor features, the image is deemed an indoor image. Otherwise, it is deemed
an outdoor image.

The approach results in an indoor images dataset containing 2,702,506 images
and an outdoor images dataset containing 1,025,384 images. Each of these Zoopla
datasets is considerably larger than the Google Street View and Geograph datasets.
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The smaller outdoor Zoopla dataset already contains approximately double the
number of images available in the Google Street View dataset and over three times
as many images as the Geograph dataset (518,808 and 328,014 images respectively).
We note however that for Google Street View, this difference in sample size does not
reflect data availability but the way in which the photos were accessed.

The number of Zoopla images for each MSOA ranges from 455 to 7,139 with
a median of 2,591 for the indoor dataset, and from 149 to 2,821 with a median of
973 for the outdoor dataset. For the entire dataset, the number of Zoopla images
for each MSOA ranges from 619 to 9,907 with a median of 3,568. This represents a
considerably larger volume of photos per MSOA in comparison to the Google Street
View and Geograph datasets. For Google Street View, the number of images for each
MSOA ranges from 88 to 2,164 with a median of 496, and for Geograph, the number
of images ranges from 8 to 14,768 with a median of 151.

Both Google Street View and Geograph imagery contains outdoor visuals, and
since we have access to outdoor Zoopla imagery, we additionally explore whether local
house prices across London can be estimated well using outdoor Zoopla imagery. This
allows us to compare model performance from different data sources when estimating
house prices from outdoor imagery. Furthermore, in Chapter 4, we found that using
a larger number of photos in a house prices estimation model improves performance.
Given that we are in possession of such a large volume of Zoopla images, we may
achieve better performance if we attempt to build such a model from all available
images, rather than indoor or outdoor imagery alone. Thus, we also investigate
how well local house prices across London can be estimated using all Zoopla images.
Specifically, we estimate local house prices across London from indoor, outdoor, and
both indoor and outdoor Zoopla imagery.

5.2.4 Elastic net model

As discussed earlier in Section 5.2.2, the visual characteristics of each MSOA in
London are summarised by a feature vector. For visual information obtained from
indoor Zoopla images, the feature vector is of length 160; for visual information
obtained from outdoor Zoopla images, the feature vector is of length 205; and for
visual information obtained from all Zoopla images, the feature vector is of length
365. When building each of the house price estimation models, the relevant feature
vector acts as input to our regression. We use an elastic net model, as in the Google
Street View and Geograph analyses, to help us manage correlations between features.
To test and train our elastic net model, we use the leave-one-out approach detailed
in the Google Street View analysis (Section 3.2.4).
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5.2.5 Measuring change in house prices

In addition to estimating local median house prices in London, we also explore whether
Zoopla imagery can shed light on how median house prices have changed in recent
years. When estimating relative changes in house prices using Geograph imagery
(Section 4.3.4), we achieved greater performance when using the full set of images,
rather than the images restricted to the time period in question. Therefore despite
our Zoopla dataset lacking dated images, we investigate how good the estimates
of relative changes are when using Zoopla data. It would be better to investigate
how areas had changed visually over time and compare this to relative changes in
price, but this initial exploratory analysis may provide some sense of likely minimum
performance when inferring changes in house price from visual information.

As with the Google Street View and Geograph analyses, we consider house
price changes over a decade, from 2005 and 2006 to 2015 and 2016. Again, we rank
MSOAs by median house price by setting the highest rank of 983 to the MSOA with
the highest median house price, and the lowest rank of 1 to the MSOA with the
lowest median house price. If two areas have the same median house price, we give
them both the mean rank. The change in median house price rank is then calculated
as the 2015–2016 rank minus the 2005–2006 rank. To interpret the change in ranked
price, consider a change of -100. This would indicate a decrease in ranked median
house price by 100 places over the decade, such that 100 more MSOAs now had
higher median house prices.

To model the change in ranked price, we again employ an elastic net. Specifi-
cally, we take the relevant feature vector as input, generated from indoor, outdoor,
or all Zoopla images, and predict the change in median house price rank.

5.3 Results

5.3.1 Estimating local house prices in London during 2015 and 2016
from indoor Zoopla imagery

Can we infer differences in median house prices across local areas of London from
indoor Zoopla images? The observed and predicted median house prices are mapped
and visualised in Fig. 5.2a and Fig. 5.2b, where a darker area represents a higher
median house price. The observed median house price corresponds to the true median
house price for each MSOA, and the predicted median house price corresponds to the
estimate of median house price from indoor Zoopla images. We produce all estimates
using the methodology outlined in Fig. 5.1. As with the Google Street View and
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Geograph analyses, median house prices across the 983 MSOAs in London range
from £69,460 to £1,270,000, and the observed median house price map in Fig. 5.2a
illustrates that areas in the centre of London tend to have higher median house prices,
whereas areas in the east of London tend to have relatively lower house prices.

To establish whether we can estimate median house prices from indoor Zoopla
imagery, we fit an elastic net model. The optimal value of l1_ratio is 0.999999
with an α of 0.41 (to 2 decimal places). We also perform a regression analysis after
using the leave-one-out approach to compare the true median house prices with the
estimates generated by the elastic net for each MSOA. From the analysis, we find
that the model can generate very good estimates of median house prices (R2 = 0.81,
N = 983, p < 0.001). In fact, the model performs notably better than the Google
Street View (R2 = 0.56, N = 983, p < 0.001) and Geograph (R2 = 0.44, N = 983,
p < 0.001) models estimating median house prices in London. This may be because
the median number of indoor Zoopla images available per MSOA is high, so a large
amount of visual information is available for each area. Recall that the number of
indoor Zoopla images available per MSOA ranges from 455 to 7,139 with a median of
2,591 images. In contrast, the median number of photos available for each MSOA is
496 for our Google Street View dataset, and 151 for our complete Geograph dataset.

Mapping the estimates produced by the model in Fig. 5.2b visually confirms
that the predictions of median house prices are close to the true values, and the
model is able to capture variations in median house prices of MSOAs in London
well. This is further supported by the map of prediction errors from the model,
depicted in Fig. 5.2c, where blue denotes an underestimate and red denotes an
overestimate of median house price. Visual inspection reveals that areas in the east of
London are sometimes overestimated and areas in the west of London are sometimes
underestimated. However, the errors are small. The mean absolute error is £67,800
and the mean absolute percentage error is 14.30%. In comparison, the mean absolute
error and mean absolute percentage error for the Google Street View model was
£97,710 and 20.24%, and for the Geograph model was £136,500 and 29.18% (all
errors to 4 significant figures).

Figure 5.2d shows the scatter plot of observed against predicted median house
prices, where the red dots represent MSOAs and the blue line represents where perfect
predictions should fall. The plot highlights that the model does not struggle with
extreme values like the Google Street View and Geograph models did. We do find
that some of the highest median house prices are slightly underestimated, but the
effect is subtle.
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Figure 5.2: Evaluation of estimates of London house prices during 2015
and 2016 from indoor Zoopla images. (a) Map of median house prices for each
MSOA (‘Observed’). Darker areas correspond to higher house prices. (b) Map of
median house prices for each MSOA estimated from Zoopla images (‘Predicted’).
Again, darker areas correspond to higher house prices. We generate estimates using
the methodology outlined in Fig. 5.1. The model correctly identifies higher median
house prices in the centre of London and lower median house prices in parts of the
east of London. A regression analysis shows that the elastic net model performs very
well at estimating local house prices (R2 = 0.81, N = 983, p < 0.001). (c) Map of
the errors in median house price estimates for each MSOA (‘Error’). Blue denotes
an underestimate and red denotes an overestimate in median house price. Median
house prices around the east of London tend to be overestimated, whereas median
house prices around the west of London tend to be underestimated. (continues on
the following page)
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Figure 5.2: (continues from previous page) (d) Log-log plot of observed and
predicted median house prices. The red dots represent MSOAs in London and the
blue line represents where perfect estimates would fall. We find that median house
prices are inferred well, including higher median house prices. Comparatively, the
Google Street View (Fig. 3.4d) and Geograph (Fig. 4.7d) models struggled with
extreme values. For all maps, quantile breaks are implemented with six bins. Contains
National Statistics data © Crown copyright and database right 2011. Contains
Ordnance Survey data © Crown copyright and database right 2011. Zoopla Limited,
© 2018. Contains data from Zoopla Limited. Economic and Social Research Council.
Zoopla Property Data 2018. University of Glasgow - Urban Big Data Centre.

We depict all non-zero coefficients from the elastic net model in Fig. 5.3. For
each coefficient, the absolute value indicates how big an effect the feature has on
median house price estimates, and the sign indicates whether the effect is positive or
negative. If the effect is positive, the feature is associated with higher median house
prices, and if the effect is negative, the feature is associated with lower median house
prices. For example, the model associates the features ‘bedchamber’, ‘elevator lobby’
and ‘living room’ with higher median house prices, and associates ‘recreation room’,
‘waiting room’, and ‘bedroom’ with lower median house prices. Although the sign of
the coefficients generally follows intuition, some of the results appear contradictory.
For example, a ‘bedchamber’ is a positive coefficient whereas a ‘bedroom’ is a negative
coefficient, but they are both rooms that one would sleep in and are almost always
present in a house. What is the distinction between these features?

5.3.2 Exploring coefficients from the house price estimation model
using indoor Zoopla imagery

To explore the coefficients and understand how Places365 operates with indoor Zoopla
imagery, we first look at a selection of top-scoring indoor images for top positive and
negative coefficients. We pick the top three positive and negative coefficients and
for each feature, examine three of the ten highest-scoring images with high feature
values. Our analysis is presented in Fig. 5.4, where the feature values underneath
each image are those extracted for the given feature using Places365 (Section 5.2.2).
For each of the images, the corresponding feature is its top classification.
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Figure 5.3: Elastic net coefficients for estimates of median house prices
in London during 2015 and 2016 from indoor Zoopla images. We train an
elastic net model using the methodology outlined in Fig. 5.1 and depict the resulting
coefficients from the model for all features where the coefficient is not zero. (continues
on the following page)
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Figure 5.3: (continues from previous page) Positive coefficients relate to visual
features that are associated with higher median house prices, whereas negative
coefficients relate to visual features that are associated with lower median house
prices. The features that the model has learnt to link with areas of higher median
house prices include ‘bedchamber’, ‘elevator lobby’, and ‘living room’, and the
features that the model has learnt to link with areas of lower median house prices
include ‘recreation room’, ‘waiting room’, and ‘bedroom’. Generally, we find that the
sign of the coefficients accord with intuition but a few results appear contradictory.
For example, it is unclear why a ‘bedchamber’ is linked with higher house prices,
whereas a ‘bedroom’ is linked with lower house prices. We investigate this further in
Section 5.3.2.

In general, Places365 assigns labels to images accurately and the labels
themselves broadly reflect the contents of the images. Of the features shown in
Fig. 5.4, only the images labelled ‘waiting room’ (Fig. 5.4e) are likely not to be waiting
rooms, given that we know that we have retrieved images of housing. However, the
rooms depicted do very much look like waiting rooms. In this housing context, it
however seems more likely that these rooms are living rooms with minimal decor.
Figure 5.4c shows images associated with the label ‘living room’, but these living
rooms are more elaborately decorated. This example demonstrates that the CNN
is able to identify nuances in indoor images of rooms. A further example includes
the distinction between a ‘bedchamber’ (Fig. 5.4a) and a ‘bedroom’ (Fig. 5.4f). The
images associated with both labels contain bedrooms, but those associated with a
‘bedchamber’ include a four-poster bed rather than the standard bed found in images
labelled ‘bedroom’.

Moreover, notice how the features with images of more elaborately decorated
rooms (‘living room’, ‘bedchamber’) are positive coefficients in our house price
estimation model, and the features with images of less elaborately decorated rooms
(‘waiting room’, ‘bedroom’) are negative coefficients. It seems that the elastic net
connects features describing well-furnished rooms with higher median house prices,
and features describing less decorated rooms with lower median house prices. This is
reasonable, given the likely differences in economic circumstances of people who can
afford large four-poster beds and people who can afford very little furniture. The
level of furnishing can give an indication of the financial status of those living in a
particular house, which in turn provides some hints as to the price of the property.
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Figure 5.4: Top indoor Zoopla images of London for top positive and
negative coefficients. We identify the three features that are most positively and
negatively related to median house prices in London according to the elastic net
model. (continues on the following page)
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Figure 5.4: (continues from previous page) By exploiting the feature vectors we
extract from the indoor Zoopla images using the methodology outlined in Fig. 5.1, we
identify three images with high feature values for each of the features. We can then get
some insights into which shapes and patterns the CNN sees for each feature. (a) The
images with a high score for the feature ‘bedchamber’ contain bedrooms with large,
four-poster beds. The label accurately reflects the contents of the images. (b) The
images with a high score for the feature ‘elevator lobby’ contain elevator lobbies, so
are correctly labelled. (c) The images with a high score for the feature ‘living room’
contain well-furnished living rooms. Again, the label accurately reflects the contents
of the images. (d) The images with a high score for the feature ‘recreation room’
contain a room with a pool table. As pool is a recreational activity, this label appears
accurate. (e) The images with a high score for the feature ‘waiting room’ contain
rooms with seating and minimal decorations. Without further context, it would
appear entirely reasonable to suppose these were indeed waiting rooms. However, as
we know that we have retrieved images of housing, it seems more likely that these
are in fact sparsely decorated living rooms. (f) The images with a high score for the
feature ‘bedroom’ contain bedrooms with neat, standard beds. Once again, the label
accurately reflects the contents of the images. Generally, the images that exhibit
high scores for a given feature have similar characteristics to each other, and are
broadly labelled correctly. Furthermore, Places365 is able to identify nuances in
indoor images of rooms, distinguishing ‘bedchamber’ from ‘bedroom’ for example.
Contains images from Zoopla Limited, © 2018. Zoopla Limited. Economic and
Social Research Council. Zoopla Property Data 2018. University of Glasgow - Urban
Big Data Centre.

Since Places365 is able to distinguish differences between rooms from indoor
Zoopla images, we want to better understand how the model operates. Which
areas of London are associated with the features that represent the top positive and
negative coefficients? In particular, we are interested in understanding which positive
coefficients are associated with which areas of higher median house prices, such as
some areas in the south-west of London, and which negative coefficients are associated
with which areas of lower median house prices, such as some areas in East London.

We first examine feature value distribution maps for positive coefficients in
Fig. 5.5, using the positive coefficients features showcased in Fig. 5.4 as examples.
Visual inspection reveals that the features ‘bedchamber’ (Fig. 5.5b), ‘elevator lobby’
(Fig. 5.5c), and ‘living room’ (Fig. 5.5d) are all more prevalent in the centre of
London, but the prevalence of the features varies across other areas in London that
exhibit higher median house prices. In particular, ‘bedchamber’ exhibits higher
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relative feature values in areas in the south-west of London with higher median
house prices, similarly to ‘living room’, but is also more prevalent in areas in the
south-east of London with higher median house prices, unlike ‘elevator lobby’ and
‘living room’. Furthermore, ‘elevator lobby’ has higher relative feature values in areas
in the north-east of London with higher median house prices.

Next, we examine the feature value distribution maps for negative coefficients
in Fig. 5.6 using the negative coefficient features showcased in Fig. 5.4 as examples.
We find that the features are more prevalent in areas with lower median house prices,
but are also somewhat prevalent in areas with higher median house prices. The map
for the feature ‘recreation room’ (Fig. 5.6b) reveals higher feature values in areas in
the west of London where median house prices are lower, as does the map for the
feature ‘waiting room’ (Fig. 5.6c). However, a ‘waiting room’ is also more prevalent
in areas in the east of London where median house prices are lower, and less prevalent
below the River Thames. The feature ‘bedroom’ (Fig. 5.6d) is more prevalent in the
south-west of London, but is less prevalent in the north-west of London, where the
local house prices are higher.

Some of the areas in which the feature ‘recreation room’ is highly prevalent
are areas with higher median house prices, such as the south and north-west of
London. This phenomenon could be explained by the fact that the features values
themselves are an order of magnitude smaller than the other coefficients we map, so it
is possible that recreation rooms are relatively uncommon in London. We investigate
this further, and consider whether the importance of ‘recreation room’ is inflated
because of its minimal presence in London. To do so, we find features whose mean
feature value is within 0.005 of the mean feature value of ‘recreation room’, which is
0.009427 (to 4 significant figures). We then compare the coefficient values of the 10
features identified to determine whether they all have large magnitudes. We find that
the features ‘office’ and ‘playroom’ both have low mean feature values in London
but are ignored by our model. These counterexamples suggest that the weighting of
‘recreation room’ is not arbitrary.
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Figure 5.5: Prevalence of high positive coefficient features in London
from indoor Zoopla images. (a) Map of median house prices for each MSOA
(‘Observed’), as also shown in Fig. 5.2a. Darker areas correspond to higher median
house prices. (b) Map of mean feature values for the feature ‘bedchamber’. The
feature values are extracted via the methodology outlined in Fig. 5.1. We want
to determine which positive coefficients are associated with which areas of higher
median house prices. For all of the following maps, darker areas correspond to higher
feature values and all maps are presented at MSOA granularity. Many of the areas
that observe high median house prices seem to have house interiors that Places365
associates with the feature ‘bedchamber’, especially towards the south-west and
south-east of London. (c) Map of mean feature values for the feature ‘elevator lobby’.
Again, areas corresponding to higher median house prices, the centre and north-east
of London in particular, exhibit high mean feature values for the feature ‘elevator
lobby’. However, it is less prevalent in the south-east of London. (continues on the
following page)
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Figure 5.5: (continues from previous page) (d) Map of mean feature values for
the feature ‘living room’. Living rooms appear to be more prevalent in MSOAs that
have higher median house prices, especially in the centre and south-west of London.
We note that for all of our examples, the features are more prevalent in the centre
of London. For all maps except (a), standard deviation breaks are implemented,
whereas (a) uses quantile breaks, with six bins. Note that the maps therefore use
different scales. Contains National Statistics data © Crown copyright and database
right 2011. Contains Ordnance Survey data © Crown copyright and database right
2011. Contains data from Zoopla Limited, © 2018. Zoopla Limited. Economic and
Social Research Council. Zoopla Property Data 2018. University of Glasgow - Urban
Big Data Centre.

We further inspect the coefficients and feature values to determine whether
we see high coefficients simply because the feature values are generally low. To begin,
we calculate the mean feature value for each indoor feature across all MSOAs. We
then identify the features whose mean feature value is in the top 10% of mean feature
values calculated. We compare the coefficient values to the mean feature values of
these 16 features. We find that three of the 16 features are in either the top 10
positive coefficients or in the top 10 negative coefficients (18.75%). Only one of the
16 features is set to zero. In comparison, 100% of the features in the bottom 10% of
mean feature values are set to zero. Generally, it seems that features with high mean
feature values also contribute the most to the estimates of median house prices in
the model.

In addition to the feature value distribution maps, we also explore how well the
model can characterise areas of London. We choose to compare the visual information
available from two areas in London with different socioeconomic statuses. Specifically,
we investigate newly gentrified Dalston (E02000365) (Davison, Dovey, & Woodcock,
2012), and family-oriented Acton (E02000258), as showcased in Fig. 5.7. For back-
ground, the population of Dalston consists of slightly more working professionals
than Acton (Office for National Statistics, 2014b), whereas the population of Acton
consists of more families than Dalston (Office for National Statistics, 2014a).
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Figure 5.6: Prevalence of high negative coefficient features in London
from indoor Zoopla images. (a) Map of median house prices for each MSOA
(‘Observed’), as also shown in Fig. 5.2a. Darker areas correspond to higher median
house prices. (b) Map of mean feature values for the feature ‘recreation room’. The
feature values are extracted via the methodology outlined in Fig. 5.1. We want to
determine which negative coefficients are associated with which areas of lower median
house prices. For all of the following maps, darker areas correspond to higher feature
values and all maps are presented at MSOA granularity. Visual inspection reveals
that the feature ‘recreation room’ is more prevalent in areas with lower median house
prices, such as the north-west of London. However, the feature values are smaller
than the feature values of other negative coefficients by an order of magnitude, so it
may be that there are generally not many recreation rooms in London. (continues
on the following page)
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Figure 5.6: (continues from previous page) (c) Map of mean feature values for the
feature ‘waiting room’. Areas corresponding to lower median house prices, especially
towards the east and west of London, also correspond to the prevalence of ‘waiting
room’ in London. It is also less prevalent below the River Thames. (d) Map of mean
feature values for the feature ‘bedroom’. The feature appears to be more prevalent
in the south-west of London, but less prevalent in the north-west of London, where
the local house prices are higher. For all of our examples, the features are more
prevalent in areas that exhibit lower median house prices, but are also somewhat
prevalent in areas which higher median house prices. For all maps except (a), standard
deviation breaks are implemented, whereas (a) uses quantile breaks, with six bins.
Note that the maps therefore use different scales. Contains National Statistics data
© Crown copyright and database right 2011. Contains Ordnance Survey data ©
Crown copyright and database right 2011. Contains data from Zoopla Limited, ©
2018. Zoopla Limited. Economic and Social Research Council. Zoopla Property Data
2018. University of Glasgow - Urban Big Data Centre.

To compare, we first obtain a mean feature vector for both MSOAs that
includes both indoor and outdoor features. The process for extracting feature vectors
is described in Section 5.2.2. We also calculate a total mean feature vector for London
from all available Zoopla images, where the mean feature value for each feature is
given by the sum of feature values from all images, divided by the number of images.
Then for the two MSOAs in Dalston and Acton, we calculate the relative mean
feature vector by subtracting the total mean feature vector for London from the mean
feature vector of that MSOA. All feature vectors are of length 365, as they include
both indoor and outdoor features extracted from Places365. Finally, we identify
the ten features with the highest relative mean feature values and the ten features
with the lowest relative mean feature values. This allows us to identify which visual
characteristics are prevalent in each area and which are less prevalent, relative to the
general visual characteristics of London.

Figure 5.7a displays the relative mean features for Acton and Fig. 5.7b displays
the relative mean features for Dalston. The red features represent the top, most
prevalent relative mean features and the blue features represent the lowest, least
prevalent relative mean features. Next to the features of each area, we also visualise
how prevalent the same features are in the other area. We can then compare how
the relative mean feature values differ between the areas and determine whether the
model can differentiate between areas with different socioeconomic statuses. The
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relative mean feature values themselves can be interpreted as relating to how likely a
given feature is to appear in a given area, compared to London generally. We also
include four interior Zoopla images for each area in the figure, to provide an idea of
common furnishings in each area.

By inspecting the features, we see that several features that are more prevalent
in Dalston are less so in Acton, and vice versa. For example, the features ‘yard’ and
‘house’ are more likely to appear in family-oriented Acton but less likely to appear in
newly gentrified Dalston, whereas the features ‘balcony’ and ‘apartment building’ are
more likely in Dalston but less likely in Acton. This analysis is an illustration of how
the model can identify different visual features in areas with different socioeconomic
statuses.

5.3.3 Estimating changes in local house price rank in London from
2005 and 2006 to 2015 and 2016 using indoor Zoopla imagery

Can we identify which areas of London have become relatively more expensive or
relatively cheaper over time? To answer this question, we model the change in median
house price rank, as in Sections 3.2.5 and 4.3.3. The change in median house price
rank for each MSOA is calculated using the methodology described in Section 5.2.5.
We use the same house price data as in the Google Street View and Geograph analyses,
and so the change in median house price rank again ranges from -424.5 to 522.

Figure 5.8a shows a map of the actual changes in median house price rank for
each MSOA. Blue areas represent a decrease in ranked price and red areas represent
an increase in ranked price over the decade. As noted with the Google Street View and
Geograph analyses, we observe that areas towards the north-east and south-east of
the centre of London exhibit increases in ranked price, whereas areas in the outskirts
of London exhibit decreases in ranked price over the decade.

The predicted change in median house price rank is shown in Fig. 5.8b, where
the estimated changes are generated using the methodology outlined in Fig. 5.1 and
indoor Zoopla images. Again, blue areas represent a decrease in ranked price and red
areas represent an increase in ranked price from 2005 and 2006 to 2015 and 2016.
During the process of fitting our elastic net model, we find the optimal value of
l1_ratio to be 0.99 with a corresponding α of 0.00060 (to 2 significant figures).
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Figure 5.7: Comparing visual characteristics of two MSOAs with different
socioeconomic statuses. Can the house price estimation model characterise
different areas of London appropriately? We choose a newly gentrified MSOA in
Dalston and a family-oriented MSOA in Acton, and compare their visual information.
We extract feature vectors for each Zoopla image as described in Section 5.2.2.
Using the full Zoopla dataset, including both indoor and outdoor Zoopla images,
we calculate the total mean feature vector for London, or in other words, the mean
feature value for all 365 features identified by Places365 for all Zoopla images in
London. Then for both of our chosen MSOAs, we calculate a relative mean feature
vector by subtracting the total mean feature vector for London from the mean feature
vector of each MSOA. Finally, we identify the ten features with the highest relative
mean feature values and the ten features with the lowest relative mean feature values.
This allows us to identify the common and less common visual characteristics of
each area, relative to the characteristics of the entirety of London. (continues on the
following page)
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Figure 5.7: (continues from previous page) (a) Relative mean features in Acton.
Red denotes a higher relative mean feature value and blue denotes a lower relative
mean feature value. The feature value itself relates to how prevalent a feature is in
an area relative to the whole of London. The same relative mean features are also
shown for Dalston for comparison. (b) Relative mean features in Dalston. Again, red
denotes a higher relative mean feature value and blue denotes a lower relative mean
feature value, and the same relative mean features are shown for Acton. It seems
that the features ‘yard’ and ‘house’ are likely to appear in family-oriented Acton
but unlikely to appear in newly gentrified Dalston, whereas the features ‘apartment
building’ and ‘balcony’ are likely to be found in Dalston, but unlikely to be found in
Acton. Overall, this analysis illustrates that our approach allows us to accurately
characterise areas of London with different socioeconomic statuses. Contains images
from Zoopla Limited, © 2018. Zoopla Limited. Economic and Social Research
Council. Zoopla Property Data 2018. University of Glasgow - Urban Big Data
Centre.

Comparing the map of predicted changes to the map of observed changes
highlights that the model is able to estimate the changes in median house price rank
reasonably well. A regression analysis comparing the observed and estimated changes
in ranked price confirms the level of performance achieved by the model (R2 = 0.42,
N = 983, p < 0.001). In particular, the model captures the broad pattern that areas
in the centre of London have seen increases in ranked price and that areas outside of
the centre of London have seen decreases in ranked price. However, the size of the
increases and decreases are often underestimated, as was the case with the Google
Street View and Geograph models. This analysis confirms that we can achieve some
success when estimating changes in local house prices without analysing changes in
the visual appearance of different areas over time. It may be possible to achieve even
greater success when comparing images from different time periods. We discuss this
further in Section 5.4.
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Figure 5.8: Inferring changes in house prices in London using indoor
Zoopla images. (a) Map of change in median house prices between 2005–2006 and
2015–2016 for each MSOA (‘Observed’). We obtain a change in median house price
rank for each MSOA in London using the methodology described in Section 5.2.5.
As with the Google Street View and Geograph analyses, blue denotes a decrease in
ranked price and red denotes an increase in ranked price from 2005 and 2006 to 2015
and 2016. (b) Map of change in median house prices for each MSOA estimated from
indoor Zoopla images (‘Predicted’). We generate estimates using the methodology
outlined in Fig. 5.1. Again, blue denotes a decrease in ranked price and red denotes
an increase in ranked price over the decade. A regression analysis indicates that the
model can capture the observed patterns across London reasonably well (R2 = 0.42,
N = 983, p < 0.001). This is evident from the maps of observed and predicted
changes in the median house price rank, which show that the model is particularly
good at identifying the increases in ranked price in the centre of London and decreases
in ranked price in the outskirts of London. (continues on the following page)
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Figure 5.8: (continues from previous page) However, the size of the increases and
decreases are often underestimated. This phenomenon was also present with the
analogous Google Street View and Geograph analyses. (c) Map of the errors in
estimates of change in median house price rank for each MSOA (‘Error’). Blue
denotes an underestimate in the change in rank and red denotes an overestimate.
Changes in median house price rank of areas in the outskirts of London, excluding
the east, tend to be overestimated, whereas changes in median house price rank of
the centre of London tend to be underestimated by the model. (d) Scatter plot of
observed and predicted change in rank. The red dots represent MSOAs in London
and the blue line represents where perfect predictions should fall. The map reveals
that extreme values are not handled well by the model, especially when the change
in median house price rank is greater than 300. For all maps, quantile breaks are
implemented with six bins. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains data from Zoopla Limited, © 2018. Zoopla Limited.
Economic and Social Research Council. Zoopla Property Data 2018. University of
Glasgow - Urban Big Data Centre.

The prediction errors in Fig. 5.8c draw attention to the fact that the change
in median house price rank of areas in the outskirts of London towards the west and
south are often overestimated, whereas the change in median house price rank of areas
in the centre of London towards the north and south are generally underestimated.
Moreover, the scatter plot of observed versus predicted change in rank (Fig. 5.8d)
highlights that estimates of the change in ranked price always fall between -300 and
300 in contrast to the true range of -425.5 to 522. More extreme changes of greater
than 300 ranks are not estimated well. Again, this may be due to the distribution of
changes in ranked price, which is heavy-tailed. Despite the model struggling with
extreme values, its performance is notably superior to that seen when using Google
Street View images (R2 = 0.27, N = 983, p < 0.001) or Geograph images (R2 = 0.18,
N = 983, p < 0.001). This is presumably due either to the larger volume of images
exploited to estimate the changes, or to the information available from indoor images.

Once again, we examine the non-zero coefficients in our elastic net model
and depict them in Fig. 5.9. Positive coefficients represent features that the model
associates with increases in ranked price over the decade, for example ‘utility room’
and ‘staircase’. Conversely, negative coefficients represent features that the model
associates with decreases in ranked price over the decade, for example ‘bathroom’ and
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‘dining room’. We discover that some of the features that are associated with higher
median house prices are associated with larger relative decreases in ranked price,
and vice versa, as we found in the corresponding Google Street View and Geograph
analyses. For instance, ‘bedchamber’ and ‘elevator lobby’ are positive coefficients in
the model estimating median house prices (Fig. 5.3) but negative coefficients in this
analysis, while ‘bedroom’ and ‘swimming pool’ are negative coefficients in the model
estimating median house prices but positive coefficients in this analysis. This could
reflect the type of changes experienced by some local areas of London. For instance,
some areas that see higher median house prices in 2015 and 2016 prices may not have
climbed as highly in the ranks over the decade, whereas other areas that see lower
median house prices in 2015 and 2016 may have climbed more highly in the ranks.

5.3.4 Estimating local house prices and changes in local house price
rank in London from outdoor Zoopla imagery

In addition to inferring median house prices of local areas in London from indoor
Zoopla imagery, we also attempt inference from outdoor Zoopla imagery. Performance
of our house price estimation models when using indoor Zoopla images is far superior
than when using Google Street View or Geograph images. Therefore, we want to
establish whether using the information available from indoor image data improves
the performance of our house price estimation model, or whether simply using Zoopla
image data leads to an improvement.

One reason we might see better performance when using outdoor images from
Zoopla rather than from Google Street View or Geograph is the number of images we
have access to. Recall that we have 1,025,384 outdoor Zoopla images in our dataset
with a median of 973 images per MSOA, while our indoor Zoopla images dataset
contains 2,702,506 images with a median of 2,591 photos per MSOA. In contrast, we
access 518,808 Google Street View images with a median of 496 photos per MSOA,
and 328,014 Geograph images with a median of 151 photos per MSOA. Even when
considering outdoor or indoor images alone, we have a far greater volume and median
number of Zoopla images in each MSOA than for either of the other two data sources.
Furthermore, the outdoor Zoopla images in our dataset include visual information
resembling a mixture of Google Street View and Geograph images, as they consist of
housing facades and gardens.
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Figure 5.9: Elastic net coefficients for estimated changes in median house
prices in London from indoor Zoopla images. We rank the MSOAs in London
using the approach detailed in Section. 5.2.5. We then train an elastic net model to
estimate the change in median house price rank between 2005–2006 and 2015–2016
using the methodology outlined in Fig. 5.1. The resulting coefficients from the elastic
net model are depicted for all features where the coefficient is not zero. Positive
coefficients relate to features associated with an increase in ranked house price over
the decade, whereas negative coefficients relate to features associated with a decrease
in ranked house price over the decade. The coefficients exhibit a similar pattern to
that seen in the Google Street View analysis (Section 3.3.2), and to some extent in
the Geograph analysis (Section 4.3.4). (continues on the following page)
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Figure 5.9: (continues from previous page) Namely, several coefficients that are
positively associated with median house prices are negatively associated with changes
in median house price rank, for example ‘bedchamber’ and ‘elevator lobby’. Likewise,
several coefficients that are negatively associated with median house prices are
positively associated with changes in median house price rank, for example ‘bedroom’
and ‘swimming pool’.

We generate estimates of median house prices across areas of London from
outdoor Zoopla images using the methodology outlined in Fig. 5.1. We conduct a
regression analysis to compare the estimates to the true median house prices for each
MSOA and find that the model performs well (R2 = 0.66, N = 983, p < 0.001),
although not as well as when using indoor Zoopla images (R2 = 0.81, N = 983,
p < 0.001; Section 5.3.1). Indeed, we find that the mean absolute error of the model
is £81,090 and the mean absolute percentage error is 16.36%, whereas for the indoor
Zoopla images model, the mean absolute error was £67,800 and the mean absolute
percentage error was 14.30% (all errors to 4 significant figures). The model does
however perform well in comparison to the corresponding Google Street View model
(mean absolute error: £97,710; mean absolute percentage error: 20.24%; R2 = 0.56,
N = 983, p < 0.001) and Geograph model (mean absolute error: £136,500; mean
absolute percentage error: 29.18%; R2 = 0.44, N = 983, p < 0.001).

We also investigate whether we can generate better estimates of changes in
median house price rank from 2005 and 2006 to 2015 and 2016 using outdoor Zoopla
images rather than indoor Zoopla images. Again, the true change in median house
price rank across this period ranges from -425.5 to 522. When employing the elastic
net, we find the optimal value of l1_ratio to be 0.99 with an α of 0.0024 (to 2
significant figures). Performing a regression on the observed and predicted changes
in ranked price demonstrates that the model performs reasonably well (R2 = 0.39,
N = 983, p < 0.001). Once again, the model performance is nearly as good as the
indoor Zoopla images model (R2 = 0.42, N = 983, p < 0.001; Section 5.3.3), and
better than the Google Street View (R2 = 0.27, N = 983, p < 0.001) and Geograph
(R2 = 0.18, N = 983, p < 0.001) models.

Altogether, it seems that using indoor Zoopla imagery leads to better per-
formance than using outdoor Zoopla imagery to estimate median house prices and
changes in median house price rank. However, we use fewer Zoopla images in the
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outdoor image analysis compared to the analysis considering indoor images only.
Moreover, we find that using either indoor or outdoor Zoopla imagery leads to im-
proved model performance in comparison to using Google Street View or Geograph
imagery. Given this observation, we ask whether using both indoor and outdoor
Zoopla images in combination to estimate median house prices in London would
result in further performance improvements.

5.3.5 Estimating local house prices in London during 2015 and 2016
from indoor and outdoor Zoopla imagery

As described in Section 5.2.3, our full Zoopla dataset of indoor and outdoor images
contains 3,727,890 images with a median of 3,568 photos per MSOA, whereas our
subset of indoor Zoopla images contains 2,702,506 images with a median of 2,591
photos per MSOA, and our subset of outdoor Zoopla images contains 1,025,384
images with a median of 973 images per MSOA. Can we improve our house price
estimation model by using both interior and exterior Zoopla images?

We start by estimating median house prices for MSOAs in London during 2015
and 2016. Once again, we obtain estimates using the methodology outlined in Fig. 5.1.
Applying the elastic net results in an optimal value of l1_ratio of 0.99999 with an α

of 0.16 (to 2 significant figures). We also run a regression analysis comparing the
observed median house price for each MSOA with the estimates produced by the
elastic net using leave-one-out analysis and find that the model performs very well
(mean absolute error: £65,300; mean absolute percentage error: 13.67%; R2 = 0.82,
N = 983, p < 0.001). This represents a marginal improvement over the analysis
using indoor Zoopla images (mean absolute error: £67,800; mean absolute percentage
error: 14.30%; R2 = 0.81, N = 983, p < 0.001; Section 5.3.1).

We further discover that the model places more emphasis on indoor features
than outdoor features. Of the top ten positive coefficients, 90% are indoor features,
and of the top ten negative coefficients, 60% are indoor features. Moreover, the top
three positive coefficients are ‘bedchamber’, ‘living room’, and ‘hotel room’, and the
top three negative coefficients are ‘waiting room’, ‘bedroom’, and ‘alcove’, all of which
are indoor features. The features ‘bedchamber’, ‘living room’, ‘waiting room’, and
‘bedroom’ were also top coefficients in the analysis using indoor Zoopla images only
(Fig. 5.3). We note that we have almost three times as many indoor images in our
dataset than outdoor images, and the median number of photos per MSOA is higher
in the indoor images dataset than the outdoor images dataset. Hence, it may be that
the model has found that there is more representative information regarding housing
interiors for it to learn from.
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We also investigate whether combining indoor and outdoor images impacts
performance when inferring changes in median house price rank from 2005 and 2006
to 2015 and 2016 in London. Again, the true change in median house price rank
across this period ranges from -425.5 to 522. When fitting an elastic net model to
generate estimates of the changes, we find the optimal value of l1_ratio to be 0.99
with a corresponding α of 0.00077 (to 2 significant figures). Conducting a regression
analysis comparing the observed relative changes for each MSOA with the estimates
produced by the elastic net using leave-one-out analysis confirms that once again,
using both indoor and outdoor Zoopla images results in a very slight improvement of
model performance (R2 = 0.43, N = 983, p < 0.001) over using only indoor Zoopla
images (R2 = 0.42, N = 983, p < 0.001). Again, of the top ten positive coefficients,
70% are indoor features, and of the top ten negative coefficients, 60% are indoor
features.

5.4 Discussion

Due to the rise in property marketing websites, the availability of images reflecting
the interior of houses has rapidly increased. Hence, the goal of this chapter is to
explore a rich source of indoor imagery of London and learn whether local house
prices can be inferred from them. We specifically explore photographic data from
Zoopla, which contain images of housing interiors. Using all of the indoor Zoopla
imagery at our disposal, we conduct two main analyses. Firstly, we attempt to infer
median house prices in London during 2015 and 2016, and secondly, we investigate
whether we can also infer relative changes in median house prices over a decade.

In addition to indoor Zoopla images, we have access to outdoor Zoopla imagery,
which contain photos of building facades and property gardens. Therefore, we also
look at conducting the same analyses with outdoor Zoopla images alone, as well as
the full dataset of indoor and outdoor Zoopla images, to see how model performance
compares to models using only indoor Zoopla images.

We successfully infer median house prices across local areas of London during
2015 and 2016 from indoor Zoopla images, and achieve superior model performance in
comparison to inferences made from the outdoor image sources Google Street View and
Geograph. We suggest that this success can be attributed to a large, representative
volume of photos across areas of London, and potentially the information available
from indoor imagery. Further analysis in which the number of photographs was held
constant for the different data sources would be required to help distinguish between
these two potential influences.
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Furthermore, the CNN we use can distinguish between furnished and less
furnished rooms. We find that well-decorated rooms are associated with higher
median house prices, whereas more simple rooms are associated with lower median
house prices. There is however still room for model improvement. Incorporating
external factors influencing house prices that are not captured visually, such as the
number of schools in an area or the mean distance of a property to a tube station,
would be likely to improve model accuracy further (Efthymiou & Antoniou, 2013;
Gibbons & Machin, 2003, 2005; Seo & Simons, 2009).

In addition to estimating local house prices from indoor Zoopla images, we also
estimate relative changes in median house price of local areas in London from 2005
and 2006 to 2015 and 2016. Once again, we achieve superior model performance in
comparison to inferences made from the outdoor image sources Google Street View and
Geograph. However, similar model limitations exist when using indoor Zoopla images.
For example, we are not making use of information regarding visual changes over
time. The reason we do not explore how images evolve over time is the difficulty we
experienced in pinpointing the exact dates that the images are taken from our dataset
whilst retaining a sufficiently large amount of visual information. If future analyses
could address this problem, they could separate the visual information available from
different time periods and measure visual changes over time to investigate whether
changes in visual appearance could be related to changes in median house price.

Since we also have access to outdoor Zoopla imagery, we investigate how
well we can infer median house prices and relative changes in median house prices
across areas in London using outdoor images from Zoopla instead. The outdoor
Zoopla images contain visual information similar to both Google Street View and
Geograph images, as they consist of housing facades and gardens. We again find that
performance is better when using outdoor Zoopla images than when using photos
from Google Street View and Geograph, although not as good as when using indoor
Zoopla images. Again, this may be due to the discrepancy in the number of images
used for each analysis.

We also investigate how performance is impacted if we use both indoor and
outdoor Zoopla imagery together. We find that estimating median house prices and
relative changes in median house prices across areas in London from all Zoopla images
leads to only marginally improved accuracy relative to making inferences from indoor
Zoopla images alone. It is not clear whether modelling with a larger volume of images
improves accuracy of house price estimates up to a certain point, after which we
see diminishing returns, or whether adding photos of a different kind brings limited
benefits. To investigate this further, we could look at varying the sample size within
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a set of homogeneous photographs (e.g., indoor photos alone).
To summarise, we find that indoor housing imagery can be used with deep

learning tools to infer house prices across local areas of London, as well as relative
changes in local house prices. Our findings further suggest that making use of both
interior and exterior image data of properties only marginally improves estimation
performance in comparison to using interior imagery alone. How would performance
differ if we utilised visual information from multiple data sources at once? We
investigate this question further in Chapter 6.
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Chapter 6

Combining Google Street View,
Geograph, and Zoopla images

6.1 Introduction

Throughout this thesis, we provide evidence suggesting that it is possible to infer
local house prices in London from relevant visual imagery of the city. Both Chapter 3
and Chapter 4 investigate the use of street-level imagery of the outdoors, from visuals
of building facades to off-road areas. Chapter 5 primarily focuses on the indoor
imagery of housing interiors from Zoopla, with some additional analyses focused on
the value of outdoor Zoopla imagery.

Overall, a diverse range of visuals is available to exploit from each data source,
whether it be outdoor or indoor information. We also note that house price estimation
models using each data source independently achieve varying levels of success. Finally,
we discover that utilising visual information from both indoor and outdoor Zoopla
images only marginally improves the performance of our house price estimation
models in comparison to using only indoor images.

In this chapter, we consider all of our image sources as a collective. How does
model performance compare if we harness the visual information contained in Google
Street View, Geograph, and Zoopla images simultaneously?

6.2 Data and methods

6.2.1 House price data

In this chapter, we once again focus on property transactions from 2015 and 2016.
Recall that the house price data are skewed with a long positive tail. Hence, we

123



calculate the median house price for each MSOA. As a reminder, a Middle Layer
Super Output Area (MSOA) contains a population of between 5,000 and 15,000
inhabitants, or between 2,000 and 6,000 households, with 983 MSOAs in London
(Stokes, 2012). Figure 6.1 illustrates our methodology.

6.2.2 Images of outdoor and indoor environments from different
data sources

As described in previous chapters, we have access to images of outdoor and indoor
environments from multiple data sources: namely, Google Street View (Chapter 3),
Geograph (Chapter 4), and Zoopla (Chapter 5). We have more coverage of London for
a longer period of time from both Geograph and Zoopla images, but only images from
2014 and 2015 from Google Street View images, due to our methodology. Therefore,
we add extra Google Street View images to this analysis, in addition to the data that
we analysed in Chapter 3, for comparability. Google Street View launched in 2007
and started capturing images of London from 2008, so we add Google Street View
images from 2008 and 2009 to the original selection of images from 2014 and 2015
only. This allows us to use visual information that spans as far back as possible.

To access images from each data source, we use the methods described in
their respective analysis chapters. More specifically, we use the methods described
in Section 3.2.1 to access Google Street View images, in Section 4.2.2 to access all
Geograph images, and in Section 5.2.3 to access both indoor and outdoor Zoopla
images. When we refer to the Zoopla images, we are referring to the dataset and
analyses using both indoor and outdoor images unless specified otherwise.

Since we are inferring median house prices at MSOA level, we collate the
images at MSOA level. We then explore how the images are distributed across
London at MSOA granularity in Fig. 6.2. For each map, a darker MSOA indicates
a larger quantity of images from the named data source. The number of Google
Street View images in each MSOA ranges from 176 to 4,328 with a median of 986
images per MSOA (Fig 6.2a); the number of Geograph images in each MSOA ranges
from 8 to 14,780 with a median of 151 images per MSOA (Fig 6.2c); and the number
of Zoopla images in each MSOA ranges from 617 to 9,907 with a median of 3,568
images per MSOA (Fig 6.2e). Our Zoopla dataset contains the most images with
a total of 3,727,890 images of London, followed by our Google Street View dataset
with 1,032,439 images of London, and finally, our Geograph dataset contains 273,915
images of London.
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Figure 6.1: Deep learning framework. We adapt the deep learning frame-
work from the Google Street View (Chapter 3), Geograph (Chapter 4), and Zoopla
(Chapter 5) analyses to infer house prices from images. We access images from each
data source as described in their respective chapters and assign each image to an
MSOA. To process the images, we use the Places365 CNN (Zhou et al., 2018) once
more, which produces a vector of 365 feature values for each image we give as input.
Each of the 365 feature values relates to the likelihood of the corresponding Places
feature occurring in the image. Example features that Places365 can identify include
‘driveway’ and ‘hotel room’. We then calculate mean feature vectors for each MSOA
and train an elastic net to learn the relationship between the mean feature vector and
the median house price for a given MSOA. Finally, we test the estimates from the
model using a leave-one-out cross-validation and compare the resulting predictions to
the actual median house price for each MSOA. All Geograph photos are licensed for
reuse under creativecommons.org/licenses/by-sa/2.0. Front photo © David Dixon;
middle photo © Robert Lamb; back photo © Jim Osley.
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Figure 6.2: The distribution of images across London. How are images
distributed across local areas of London for each of the data sources we are exploiting?
(a) Map of the number of Google Street View images in each MSOA. A darker area
represents a larger quantity of images in that area. (continues on the following page)
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Figure 6.2: (continues from previous page) The number of images in each MSOA
ranges from 176 to 4,328 with a median of 986 images per MSOA. (b) Map of
the number of Google Street View images per km2 for each MSOA. A darker area
represents a larger number of images per km2. Notice that the number of images per
km2 is not uniform. This is due to our methodology for retrieving Google Street View
images (Section 3.2.1). (c) Map of the number of Geograph images in each MSOA.
Again, a darker area represents a larger quantity of images in that area. The number
of images in each MSOA ranges from 8 to 14,780 with a median of 151 images per
MSOA. (d) Map of the number of Geograph images per km2 for each MSOA. Again,
a darker area represents a larger number of images per km2. It is clear that there is
a greater density of Geograph images in MSOAs in the centre of London. (e) Map of
the number of Zoopla images in each MSOA. Once more, a darker area represents a
larger quantity of images in that area. The number of images in each MSOA ranges
from 617 to 9,907 with a median of 3,568 images per MSOA. (f) Map of the number
of Zoopla images per km2 for each MSOA. Again, a darker area represents a larger
number of images per km2. Visual inspection reveals that the photographs do not
have uniform density across London. This is likely to reflect a greater density of
houses, or at least houses for sale, in certain MSOAs. For all maps, quantile breaks
are implemented with six bins. Contains National Statistics data © Crown copyright
and database right 2011. Contains Ordnance Survey data © Crown copyright and
database right 2011. Contains Street View data © 2017 Google. Contains Geograph
data © Geograph Project Limited and licensed for reuse under creativecommons.org
/licenses/by-sa/2.0. Contains data from Zoopla Limited, © 2018. Zoopla Limited.
Economic and Social Research Council. Zoopla Property Data 2018. University of
Glasgow - Urban Big Data Centre.

There are vast differences in the areas of different MSOAs in London. The
largest MSOA in London has an area of 22 km2, and the smallest an area of 0.29
km2. London itself has an area of 1,600 km2 with a median area of 1.1 km2 (all
areas to 2 significant figures). For this reason, in addition to examining the count of
images for each data source per MSOA, we also calculate the number of images per
km2 for each MSOA. On the image density maps we produce for each of the data
sources, a darker MSOA indicates a larger number of images per km2 for that MSOA.
The number of Google Street View images per km2 in each MSOA ranges from 47 to
1,462 with a median of 892 (Fig 6.2b); the number of Geograph images per km2 in
each MSOA ranges from 9 to 5,088 with a median of 119 (Fig 6.2d); and the number
of Zoopla images per km2 in each MSOA ranges from 146 to 11,510 with a median of
3,028 (Fig 6.2f).
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Given our method for collecting Google Street View images, we would expect
the outer, larger MSOAs to have more coverage than the inner, smaller MSOAs. This
does appear to be the case, as visible in Fig. 6.2a, but the corresponding density
map reveals that the number of images per km2 is not uniform (Fig. 6.2b). Recall
that we defined a grid of squares over London of 100 metres by 100 metres and at
the corner of each square, we took the latitude and longitude co-ordinates. We then
identified the Google Street View panorama IDs nearest to the co-ordinate pairs to
retrieve images. As such, the nearest panorama image may not necessarily be from
the MSOA in which the co-ordinate pair is located.

The reason for this is that the distribution of roads across London is not
uniform. For example, some areas in the centre of London near the River Thames
have a higher density of roads than the remainder of London, whereas some areas
in the east of London have a smaller network of roads, and more parks, rivers, and
woods. As such, the distribution of Google Street View photos is also not uniform, as
the photos are usually collected when driving a car around areas. If a Google Street
View image is unavailable at an exact latitude and longitude pair, perhaps because
there is no road there, the nearest location where an image is available could be in
another MSOA. Therefore, the number of Google Street View images of London per
km2 is not uniform. Indeed, the MSOAs that have lower photo densities tend to
correspond to areas with a lower density of roads.

Recall that Google Street View images contain visuals of streets and building
facades, as well as snippets of the environment around buildings, and we know that
the images cover the majority of the street network in London. As such, properties in
woodland areas without streets are less likely to be captured by Google Street View,
but a large variety of properties are represented by the images, from council houses
to mansions. Therefore, we expect that house prices can be accurately reflected by
this data source. Some information associated with house prices will inevitably be
missing, however, since Google Street View images do not include visuals of the
interiors of houses and are restricted to streets. Additionally, we would expect that
the features that the elastic net associates with higher and lower house prices are
representative of London.

From Fig. 6.2c, we observe that there is good coverage of Geograph images
across MSOAs in London, but that there are more images per km2 in the centre of
London than in the outskirts of London (Fig. 6.2d), suggesting that more photos are
taken in the centre. Geograph images are not restricted to visuals of streets, but
also contain characteristics of the environment, such as parks and rivers, and the
areas covered by Geograph images are those frequented by Geograph users, which is
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a specific group of people. As such, the images may not be representative of London
as a whole, but are representative of places that are popular with Geograph users.
Therefore, we expect that houses prices may not be reflected as accurately with
Geograph imagery in terms of London as a city, but the images will accurately reflect
the house prices in areas popular with Geograph users, perhaps tourists or those living
in the areas photographed. We would also expect that the features that the elastic
net associates with higher and lower house prices are more environment-focused from
Geograph imagery than Google Street View imagery.

The distribution of Zoopla images (Fig. 6.2e) shows that all MSOAs have
a large volume of images, but comparing this distribution map to the distribution
of images per km2 of MSOA (Fig. 6.2f), we find that the photographs do not have
uniform density across London. In fact, the density map for Zoopla images is similar
to the density map for Google Street View images. This suggests that with Zoopla
images, the photo density reflects the density of roads and houses for sale in London,
and the Zoopla images are representative of areas that people tend to buy houses in.

We know that Zoopla images contain information about both the interiors
and exteriors of houses, representing interior visuals that are not contained in Google
Street View or Geograph images and exterior visuals that are partially contained in
Google Street View and Geograph images. Due to the nature of the source, there is
great coverage in areas of London where houses are, as Zoopla is a platform geared
towards buying and selling housing. Therefore, we expect accurate conclusions to
be drawn about house prices from this dataset. We further expect the addition of
indoor data to provide good estimates of house prices, as the interiors may reflect
the characteristics and feel of an area in London through decor and furnishing.

Each of the three data sources captures slightly different information about
housing in London, and we need to be aware of the issues that may be associated
with each data source to accurately interpret results based on them, as discussed
in Section 2.1.1.2. Images accessed from Google Street View may contain personal
and identifying information about people, such as the people themselves, if they are
walking down a street at the same time that the street is being photographed by
Google, or their license plates. Google have made the effort to automatically blur
personal information to maintain the privacy of those that would be affected by the
images and if some information is not obscured, it can be reported and rectified
(Google, n.d.-a). The images may also be biased towards areas that contain large
proportions of the street network, and would not capture properties for sale in other
locations. However, since most houses for sale are on the street network, there is
enough information to draw accurate conclusions from.
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As mentioned previously, Geograph images are taken by members of the
public that use Geograph, so the data are likely to have some population bias because
Geograph users are not representative of the people living in London. However, the
images do contain some information that is useful and we take the bias into account
when interpreting our results. Since the photos are taken by members of the public,
they do not always obscure the people that may be in the photographs, but this may
not be an issue if appropriate permissions are gained. The quality of images also
varies across the Geograph dataset, as the images can have any resolution, but they
are generally high resolution images.

The quality of data is an issue in terms of Zoopla images too for the same
reason. Additionally, images of properties on Zoopla tend to display the best features
of a property in the best light, and may not always reflect the property accurately.
The data themselves are also slightly biased towards houses that are bought relatively
frequently to houses that do not change owners very often, which may be unrepresented
by the data. This is especially the case if a house has not been resold for over 16
years, as the dataset spans 16 years.

Generally, areas across London are well represented by each of the data
sources individually. They all operationalise in different ways but capture an essence
of housing from a human perspective that is at least somewhat indicative of their
prices. Although each of the sources are biased in some way, we do not currently have
a standard data source that is representative of all areas of London, so we take the
biases into consideration when drawing conclusions from the data sources. The biases
will also need to be taken into consideration when using the data sources together.
To understand how model performance would compare when using information from
Google Street View, Geograph, and Zoopla together, we first create a dataset that
contains details of all the images available to us. When combining all three data
sources, we find that the number of images in each MSOA ranges from 1,117 to 21,351
with a median of 4,843 images per MSOA and a total of 5,034,244 images.

As well as investigating model performance when using combinations of visual
information from all three data sources, we also investigate the use of combinations
of parts of the data sources. Specifically, the combinations of images we study are:

1. Google Street View, Geograph, and Zoopla images

2. Google Street View and Geograph images

3. Google Street View and Zoopla images

4. Geograph and Zoopla images
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6.2.3 Places CNN

In Chapter 4 and Chapter 5, we automatically extract visual features from all of
the Geograph and Zoopla images we have access to using the updated Places CNN,
Places365 (Zhou et al., 2018). However, in Chapter 3, we extract visual features from
Google Street View images taken during 2014 and 2015 using the original Places CNN,
Places205 (Zhou et al., 2014). To maintain consistency with the features extracted
from Geograph and Zoopla images, we use Places365 to automatically extract visual
features from our complete Google Street View dataset too.

To process the vast amount of Google Street View images in our dataset
in parallel, we use high-performance computing clusters managed by the Scientific
Computing Research Technology Platform at the University of Warwick, due to their
ability to process data rapidly and efficiently. We use Places365 to extract the feature
values of the 365 scene features that Places365 can recognise from images. Again, the
feature values can be interpreted as the likelihood of each feature appearing in the
given image. For each image, we store the feature values in a vector of length 365.
Recall that the feature values range from 0 to 1 and the feature vector sums to 1.

For all of the images, we keep both indoor and outdoor features in our
feature vectors. This is because all combinations of data sources except one include
Zoopla images, which capture both indoor and outdoor scenes. For evaluation of
the performance of the house price estimation model using only outdoor images
from Google Street View and Geograph, we still keep all 365 features to maintain
consistency with the other combinations of data sources we analyse.

Given that we are analysing house price data at MSOA level, we also aggregate
the visual features data to MSOA level. There are multiple images available for each
MSOA in London. We focus on two methods for aggregating the visual features to
MSOA level:

1. Mean features method: We extract feature vectors from all of the images
from the sources we are exploring. For example, if we were exploring the Google
Street View and Geograph combination, we would have feature vectors for
each image from those sources. Then for each MSOA, we collate the feature
vectors extracted from the images allocated to the MSOA and calculate the
mean feature vector. Each feature value in the mean feature vector is the
mean feature value for the corresponding feature from all of the feature vectors
associated with the MSOA. This leaves us with one feature vector of length
365. This is essentially the same method as we used in previous chapters where
we analyse images from each of our data sources individually.
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2. Concatenated features method: For each data source, we calculate the
mean feature vector for each MSOA. For example, if we were investigating
the combination of Geograph and Zoopla, we would have two mean feature
vectors of length 365: one containing the visual features from Zoopla images
alone, and one containing visual features from Geograph images alone. We then
concatenate these feature vectors for each MSOA, resulting in a longer mean
feature vector associated with each MSOA. For example, with the Geograph
and Zoopla combination, we take the mean feature vectors from both sources
and concatenate them for each MSOA. This leaves us with one feature vector
per MSOA of length 365× 2 = 730.

We explore the impact of the choice of method for aggregating visual features
throughout the chapter.

6.2.4 Elastic net model

As in the Google Street View, Geograph, and Zoopla analyses, the visual characteris-
tics of London for each MSOA are represented by a mean feature vector, where these
vectors are calculated as described above. The feature vectors are then input into
our penalised regression model to estimate local house prices in London. Once again,
we use an elastic net model to help us manage correlations between the features. We
train and test our elastic net model using the leave-one-out approach described in
the Google Street View analysis (Section 3.2.4).

6.2.5 Measuring change in house prices

As well as comparing the performance of models that seek to estimate median house
prices in London, we compare the performance of models that seek to estimate
the relative change in median house prices in London. In the Google Street View,
Geograph, and Zoopla analyses, we explore relative changes in median house prices
from 2005 and 2006 to 2015 and 2016 at MSOA granularity. In this chapter, we
follow the same approach and explore changes over the same decade. Recall that
median house prices during 2015 and 2016 at MSOA level range from £69,460 to
£1,270,000 with a median of £416,875, and median house prices during 2005 and
2006 at MSOA level range from £135,000 to £1,475,000 with a median of £234,000.

To rank MSOAs by median house price, we again set the highest rank of 983
to the MSOA with the highest median house price and the lowest rank of 1 to the
MSOA with the lowest median house price. If two areas have the same median house
price, we give them both the mean rank. The change in median house price rank is
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then calculated by subtracting the 2005–2006 rank from the 2015–2016 rank. The
changes in ranked price again range from -424.5 to 522 with a median of -4. For
example, a change in ranked price of -100 indicates a decrease in rank of 100 places,
hence a relative rank reduction in median house price over the decade.

Again, we model the change in median house price rank using an elastic net
model. The relevant feature vector is given as input to the elastic net, which outputs
a prediction for the change in ranked price.

6.3 Results

6.3.1 Estimating local house prices and changes in local house price
rank in London using an extended set of Google Street View
images

Before investigating the performance of our house price estimation model when using
visual features from multiple data sources, we revisit a comparison of performance
when using visual features from each of our data sources individually. As mentioned
in Section 6.2.2, we previously used Google Street View images to estimate median
house prices in MSOAs of London by extracting the visual features from a sample of
images taken during 2014 and 2015 using the Places205 CNN (Chapter 3). Here, we
refer to this as the original Google Street View model. In the original Google Street
View model, we make use of 518,808 photos, where the number of photos in each
MSOA ranges from 88 to 2,164 with a median of 496 photos per MSOA.

However in this chapter, we wish to also use visual features extracted from
513,631 Google Street View images taken during 2008 and 2009 in order to increase
comparability between the periods of time covered by each of the three data sources,
as discussed in Section 6.2.2. This leaves us with almost double the number of images,
at 1,032,439 in total, where the number of images in each MSOA ranges from 176
to 4,328 with a median of 986 photos per MSOA. Furthermore, we extract visual
features from all of the Google Street View images using the updated Places365 CNN,
to align our feature extraction method with that used for the Geograph (Chapter 4)
and Zoopla (Chapter 5) images. Does the performance of our model for median house
price estimation differ when using this updated Google Street View model instead of
the original Google Street View model?

To build the updated Google Street View model, we generate estimates of
median house prices across MSOAs of London using the methodology outlined in
Fig. 6.1. We find the optimal value of l1_ratio to be 0.9999999 with an α of 1.45 (to
3 significant figures) during the process of fitting the elastic net model. A regression
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analysis comparing the estimates of median house prices with the true median house
prices for MSOAs in London reveals that the updated model performs reasonably well
(R2 = 0.46, N = 983, p < 0.001) but not as well as the original model (R2 = 0.56,
N = 983, p < 0.001). The lower accuracy is clear when comparing the mean absolute
error and mean absolute percentage error from both models. For the updated model,
the mean absolute error and mean absolute percentage error are £114,000 and 24.9%,
whereas for the original model, the mean absolute error and mean absolute percentage
error are £97,700 and 20.2% (all errors to 3 significant figures).

In addition to estimating median house prices in London, we draw on the
updated dataset and feature extraction approach to estimate changes in ranked
median house prices across areas of London from 2005 and 2006 to 2015 and 2016
using the methodology outlined in Fig. 6.1. When fitting the elastic net, we find
the optimal value of l1_ratio to be 0.9999 with a corresponding α of 0.00493 (to
3 significant figures). We compare the estimates of changes in ranked price with
the true changes in ranked price for MSOAs in London via a regression analysis.
Once again, we discover that the updated model can capture some changes in ranked
median house price in areas of London (R2 = 0.22, N = 983, p < 0.001) but does
not perform as well as the original model (R2 = 0.27, N = 983, p < 0.001).

From the Geograph and Zoopla analyses, we found that using more images to
estimate median house prices and changes in median house prices improves model
performance, even if the images are from an older time period. Therefore, it is
surprising that this does not appear to be the case with Google Street View images.
The cause for worsening performance could be that the Google Street View images
taken during 2008 and 2009 in our dataset are not useful, or that the additional scene
understanding (SUN) features extracted for the original Google Street View model in
Chapter 3 played a key role in the performance of the model, or that using Places365
to extract visual features from Google Street View images is less useful than using
Places205. We can determine whether either of the latter two explanations may be
true by estimating median house prices and changes in median house prices across
areas of London from Google Street View images taken during 2014 and 2015 only
but extracting features using Places365.

In fact, using Places365 on Google Street View images taken during 2014
and 2015 alone leads to improved model performance when estimating median house
prices (R2 = 0.59, N = 983, p < 0.001) and changes in median house price rank
(R2 = 0.30, N = 983, p < 0.001). This performance is in fact marginally better
than the performance of the original Google Street View models (median house price
estimation: R2 = 0.56, N = 983, p < 0.001; changes in median house price rank:
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R2 = 0.27, N = 983, p < 0.001).
Based on these results, we determine that model performance is worse when

using all Google Street View images due to the information available from older
images. We do not explore this further in this chapter. However, given that the
Geograph model performed better when older photos were included, we suggest that
the information from Google Street View images taken during 2008 and 2009 may
be useful in conjunction with images from other data sources. For this reason, we
continue to use the updated Google Street View dataset in models that combine
multiple data sources. For the rest of the chapter, we therefore refer to the updated
Google Street View analyses as simply the Google Street View analyses.

6.3.2 Estimating local house prices and changes in local house
price rank in London using all available images and the mean
features method

How useful is the visual information available from Google Street View, Geograph,
and Zoopla images for estimating median house prices and changes in median house
prices when combined together? We initially build models using the mean features
method to extract visual characteristics from all of the images. As described in
Section 6.2.3, we extract feature vectors from all of the images from all three data
sources. For each MSOA, we then collate the feature vectors extracted from the
images associated with the MSOA and calculate the mean feature vector. Recall that
the number of images in each MSOA from the dataset consisting of all three data
sources ranges from 1,117 to 21,351 with a median of 4,843 images per MSOA. We
analyse a total of 5,034,244 images.

We first estimate median house prices across areas of London during 2015
and 2016 using all three data sources. We will refer to models using all three image
sources as combination models. Employing the elastic net results in an optimal
value of 0.999999 for l1_ratio with a corresponding α of 0.436 (to 3 significant
figures). We discover that the combination model performs very well (R2 = 0.82,
N = 983, p < 0.001; mean absolute error: £65,700; mean absolute percentage
error: 13.8%), almost matching the performance of the Zoopla model (R2 = 0.82,
N = 983, p < 0.001; mean absolute error: £65,300; mean absolute percentage
error: 13.7%). It seems that including more images in this analysis does not improve
model performance and may even slightly distract from the information gained from
Zoopla imagery alone.

Next, we estimate changes in median house price rank from 2005 and 2006 to
2015 and 2016 across MSOAs in London. During the fitting of the elastic net, we
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find the optimal value of l1_ratio to be 0.97 with an α of 0.000118 (to 3 significant
figures). A regression analysis reveals that the combination model performs better
than the Zoopla model by the smallest margin (combination model: R2 = 0.44,
N = 983, p < 0.001; Zoopla model: R2 = 0.43, N = 983, p < 0.001).

6.3.3 Estimating local house prices and changes in local house price
rank in London using all available images and the concatenated
features method

How does house price estimation differ if we extract visual characteristics from images
via the concatenated features method? As with the mean features method, we
build models to estimate median house prices and changes in median house prices
from Google Street View, Geograph, and Zoopla images together. As described in
Section 6.2.3, we first calculate the mean feature vector for each MSOA for each data
source. We then concatenate these feature vectors for each MSOA, resulting in a
larger mean feature vector associated with each MSOA. Since we are concatenating
features extracted from Google Street View, Geograph, and Zoopla, the feature vector
we input into the elastic net is of length 1,095. Again, the number of images in each
MSOA ranges from 1,117 to 21,351 with a median of 4,843 images per MSOA, and
we analyse a total of 5,034,244 images, as with the analyses using the mean features
method.

To estimate median house prices during 2015 and 2016 in MSOAs of London
using all three data sources, we implement an elastic net model once more. We find
the optimal value of l1_ratio to be 0.999999 with a corresponding α of 0.598 (to 3
significant figures). We also find that the model performs as well as the combination
model using the mean features method (both models: R2 = 0.82, N = 983, p < 0.001;
both models, mean absolute error: £65,700; concatenated features method, mean
absolute percentage error: 13.7%; mean features method, mean absolute percentage
error: 13.8%). Overall, using concatenated features does not significantly affect
performance in comparison to using mean features to estimate local house prices.

We also estimate changes in ranked median house price across local areas of
London from 2005 and 2006 to 2015 and 2016. When employing the elastic net, we
find the optimal value of l1_ratio to be 0.98 with an α of 0.000135 (to 3 significant
figures). Once again, the results mirror those from the equivalent mean features
model (both models: R2 = 0.44, N = 983, p < 0.001).
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6.3.4 Comparing models estimating median house prices in London
during 2015 and 2016

We then compare the performance of models using one, two, or three data sources,
and either the mean features or concatenated features method when building the
models. We start by comparing the models that estimate median house prices during
2015 and 2016 across MSOAs in London. Table 6.1 shows the performance statistics
for all of the models we build and discuss in this chapter. For each model, we
report the combination of data sources used and whether the model uses the mean
features method or concatenated features if more than one data source is used; the
coefficient of determination (R2); the mean absolute error (MAE, £) and the mean
absolute percentage error (MAPE, %); and the total number of images we extract
visual features from. The table is ordered in terms of model performance, where the
best-performing model is first.

If we compare the models that only use one image source, we find that the use
of Zoopla imagery leads to the model with the best performance (R2 = 0.82, N = 983,
p < 0.001) for MSOAs in London. The next best model uses Google Street View
imagery (R2 = 0.46, N = 983, p < 0.001) but is closely followed by the model using
Geograph images (R2 = 0.44, N = 983, p < 0.001). The differing performance may
be due to the number of images we use to make inferences. Specifically, we make use
of 3,727,890 Zoopla photos, 1,032,439 Google Street View photos, and only 273,915
Geograph photos of London, such that there is more visual information available
from the Zoopla dataset for the model to learn from. Alternatively, the information
available from Zoopla images may simply be more relevant and useful in visually
capturing factors that relate to house prices across MSOAs in London.
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Table 6.1: Model performance statistics for all models inferring median house prices in London during 2015 and
2016. We combine images from Google Street View, Geograph, and Zoopla in all possible variations, and generate estimates using
the methodology outlined in Fig. 6.1. This table displays the performance statistics for each of the models. For each model, the
table shows: the data source combination and if applicable, whether the model uses the mean features method or concatenated
features method; the coefficient of determination (R2), by which we order the table in order to highlight the models that perform
most accurately; the mean absolute error (MAE, £); the mean absolute percentage error (MAPE, %); and the total number of
images used to extract visual features. R2, MAE and MAPE are presented to 3 significant figures. The model with the best fit
uses visual information from Zoopla and Geograph images (R2 = 0.834 N = 983, p < 0.001), and the difference between using
mean features and concatenated features is negligible. However, this combination of imagery only leads to a slight improvement
over Zoopla imagery alone (R2 = 0.821, N = 983, p < 0.001), despite drawing on 1,032,439 more images. In terms of efficiency,
it appears more sensible to estimate median house prices from Zoopla imagery alone, especially since all of the best-performing
models include Zoopla images.

Model Input Combination Model Performance Images
Google Geograph Zoopla Mean Concatenated R2 MAE (£) MAPE (%) Total

X X X 0.834 64 100 13.5 4 760 329
X X X 0.830 64 900 13.7 4 760 329

X 0.821 65 300 13.7 3 727 890
X X X X 0.819 65 700 13.8 5 034 328
X X X X 0.816 65 700 13.7 5 034 328

X X X 0.807 66 600 14.0 4 001 889
X X X 0.805 66 600 13.9 4 001 889

X X X 0.512 107 000 23.0 1 306 438
X X X 0.512 108 000 23.4 1 306 438
X 0.465 114 000 24.9 1 032 439

X 0.444 115 000 24.6 273 999
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Examination of the table reveals that the best-performing model uses Google
Street View and Zoopla imagery (R2 = 0.834, MAE = £64,100, MAPE = 13.5%).
In essence, adding Google Street View images to Zoopla images boosts the number
of outdoor images in the dataset, helping ensure that both the interiors and exteriors
of properties are well represented. Whether the model uses the mean features
method or the concatenated features method has a negligible impact on performance.
Importantly however, we note that using both Google Street View and Zoopla images
only slightly improves model performance in comparison to Zoopla imagery alone
(R2 = 0.821, MAE = £65,300, MAPE = 13.7%). Furthermore, only using Zoopla
imagery reduces the number of images that need analysing by 1,032,439, which would
make the process of building the model faster and more efficient.

In fact, all of the best-performing models use Zoopla imagery. The next
best-performing model uses both Google Street View and Geograph photos, but there
is a clear reduction in accuracy without the Zoopla photos (R2 = 0.512, MAE =
£107,000, MAPE = 23%). However, the Google Street View and Geograph model
uses 2,421,452 less photos than the Zoopla model. It is therefore unclear whether
insights available from indoor imagery are more valuable when estimating median
house prices than those available from outdoor imagery, or whether we simply need a
large number of images from one source.

In Table 6.2, we report the elastic net parameters and coefficient statistics for
all of the models we build. For each model, we show the combination of data sources
used and whether the model uses the mean features method or concatenated features
if more than one data source is used, exactly like Table 6.1; the optimal value of
l1_ratio and the corresponding α from fitting the elastic net; the total number of
non-zero coefficients we extract from the elastic net; and of the top 50 positive and
negative elastic net coefficients, the number of coefficients extracted from each data
source if the model uses the concatenated features method. ‘S’ represents Google
Street View features, ‘G’ represents Geograph features, and ‘Z’ represents Zoopla
features. Once again, the table is ordered in terms of model performance, where the
most accurate model is first.

Inspecting the elastic net parameters reveals that l1_ratio > 0.99999 for all
models, so all of the models are essentially lasso models. As described in Section 2.2.2,
these models focus on tackling overfitting more than tackling multicollinearity. Fur-
thermore, the accompanying αs are generally very small.
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Table 6.2: Model configuration for all models inferring median house prices in London during 2015 and 2016.
We combine images from Google Street View, Geograph, and Zoopla in all possible variations, and generate estimates using the
methodology outlined in Fig. 6.1. This table displays the model parameters and a breakdown of the coefficients for each of the
models. For each model, the table shows: the data source combination and if applicable, whether the model uses the mean features
method or concatenated features method; the optimal value of l1_ratio from fitting the elastic net; the corresponding α; the total
number of non-zero coefficients extracted from the model; and the number of coefficients extracted from each data source in the
top 50 positive and negative coefficients, if the model uses the concatenated features method. When using concatenated features,
as described in Section 6.2.3, we can distinguish between the features we extract from each data source. ‘S’ represents features
extracted from Google Street View images, ‘G’ represents those extracted from Geograph images, and ‘Z’ represents those extracted
from Zoopla images. Note that the α is given to 3 significant figures. All models show l1_ratio > 0.99999, indicating that all of the
elastic net models are close to lasso models. The αs are also generally small. If the model uses concatenated features when it uses
Zoopla imagery, at least half of the features in the top 50 positive and negative coefficients are also Zoopla features.

Model Input Combination Elastic Net Parameters Coefficients
Google Geograph Zoopla Mean Concatenated l1_ratio α Total S G Z

X X X 0.999 999 0.251 242 21 79
X X X 0.999 999 0.210 203

X 0.999 99 0.157 227
X X X X 0.999 999 0.436 210
X X X X 0.999 999 0.599 248 9 39 52

X X X 0.999 999 0.551 200
X X X 0.999 999 0.675 222 41 59

X X X 0.999 999 9 10.5 52
X X X 0.999 99 0.475 471 30 70
X 0.999 999 9 1.45 90

X 0.999 99 0.758 302
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For models using the concatenated features method, we also report the number
of coefficients extracted from each data source out of the top 50 positive and negative
elastic net coefficients. These features have the most impact on the estimates we
generate. We observe that each of the four models using the concatenated features
method and Zoopla images are heavily influenced by Zoopla features extracted from
Zoopla images. In the Google Street View and Zoopla model, 79 out of 100 features
are Zoopla features; in the combination model, 52 out of 100 features are Zoopla
features; and in the Geograph and Zoopla model, 59 out of 100 features are Zoopla
features.

The impact of Zoopla features can be seen in Fig. 6.3, which depicts the
elastic net coefficients we extract from the model using the concatenated features
method with images from all three data sources. Since we use concatenated features,
we need to distinguish between the features associated with each data source. In the
figure, ‘S’ represents Google Street View, ‘G’ represents Geograph, and ‘Z’ represents
Zoopla. The features extracted from Zoopla images dominate the top coefficients and
are often indoor features. Of the top ten positive coefficients, six are extracted from
Zoopla images, and of the top ten negative coefficients, seven are extracted from
Zoopla images.

Moreover, we note that only a few of the top coefficients are extracted from
Google Street View. In fact, only nine come from Google Street View, whereas
39 come from Geograph. This could be because the Geograph dataset includes
images of both building facades and gardens, whereas the Google Street View dataset
mainly includes visuals of building facades. As such, perhaps more useful information
relating to local house prices is gained from more off-road visuals, rather than the
exteriors of buildings. The Zoopla dataset also includes indoor imagery, which may
complement the Geograph imagery well, providing a clearer landscape of houses and
their surroundings for the elastic net to learn from.
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Figure 6.3: Top 50 elastic net coefficients for estimates of London house
prices during 2015 and 2016 from all images using the concatenated
features method. We train an elastic net model to estimate median house prices
using the methodology outlined in Fig. 6.1 and display the resulting coefficients.
We use the concatenated features method, as described in Section 6.2.3, where we
independently calculate the mean feature vector for each MSOA for each data source,
then concatenate these feature vectors for each MSOA. Using the concatenated
features method, we can distinguish between the features we extract from each data
source. ‘S’ represents Google Street View, ‘G’ represents Geograph, and ‘Z’ represents
Zoopla. Positive coefficients reflect features that correspond to higher median house
prices and negative coefficients reflect features that correspond to lower median house
prices. (continues on the following page)
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Figure 6.3: (continues from previous page) Most of the features deemed important
by the elastic net are extracted from Zoopla images and tend to be indoor features.
Of the top ten positive coefficients, six are extracted from Zoopla images, and of the
top ten negative coefficients, seven are extracted from Zoopla images. None of the
top ten coefficients and very few of the top 50 coefficients are extracted from Google
Street View images.

6.3.5 Comparing models estimating changes in local house price
rank in London from 2005 and 2006 to 2015 and 2016

We also compare the performance of models that estimate changes in median house
price rank from 2005 and 2006 to 2015 and 2016 in MSOAs of London, again using
one, two, or three data sources, and the mean features or concatenated features
method in the models. The performance statistics for the models of change in ranked
price are provided in Table 6.3. For each model, we report: the combination of data
sources used and whether the model uses the mean features method or concatenated
features method if multiple data sources are exploited; the coefficient of determination
(R2); and the total number of images we extract visual features from. The table is
ordered in terms of model performance, where the most accurate model is first.

We first compare the models that only use one image source. In terms of
performance, we observe the same pattern as we saw when estimating median house
prices from 2015 and 2016. Namely, the model using Zoopla imagery performs best
(R2 = 0.43, N = 983, p < 0.001), followed by the model using Google Street View
imagery (R2 = 0.22, N = 983, p < 0.001), with the model using Geograph imagery
achieving limited success (R2 = 0.18, N = 983, p < 0.001).

Unlike median house price estimation models, the model that estimates the
changes in median house price rank best uses imagery from Google Street View,
Geograph, and Zoopla (R2 = 0.4438). The second best model uses Geograph
and Zoopla images (R2 = 0.4436) and performs essentially identically to the best
performing model. However, both models are only marginally better than the Zoopla
model (R2 = 0.433). Again, since the Zoopla model uses fewer images than the top
two models, it may be more efficient to estimate changes from Zoopla images alone,
as accuracy is not noticeably compromised.
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Table 6.3: Model performance statistics for all models inferring changes in median house prices in London from
2005 and 2006 to 2015 and 2016. We combine images from Google Street View, Geograph, and Zoopla in all possible variations,
and generate estimates using the methodology outlined in Fig. 6.1. This table displays the performance statistics for each of
the models. For each model, the table shows: the data source combination and if applicable, whether the model uses the mean
features method or concatenated features method; the coefficient of determination (R2), by which we order the table in order to
highlight the models that perform most accurately; and the total number of images used to extract visual features. Note that R2 is
presented to 3 significant figures. The model with the best fit uses visual information from all three data sources, but is almost
identical to the model using Zoopla and Geograph imagery (R2 = 0.444, N = 983, p < 0.001). Both models use the concatenated
features method. However, this combination of imagery once again only leads to a small improvement over Zoopla imagery alone
(R2 = 0.433, N = 983, p < 0.001). Again, for efficiency, it would be more sensible to estimate changes in median house prices
from Zoopla imagery alone, since all of the best-performing models include Zoopla images and the Zoopla dataset is smaller than
any combination dataset, whether it be the Zoopla and Geograph dataset or Zoopla and Google Street View dataset.

Model Input Combination Model Performance Images
Google Geograph Zoopla Mean Concatenated R2 Total

X X X X 0.444 5 034 328
X X X 0.444 4 001 889

X X X 0.441 4 760 329
X X X 0.439 4 001 889

X X X X 0.438 5 034 328
X 0.433 3 727 890

X X X 0.409 4 760 329
X X X 0.244 1 306 438
X X X 0.240 1 306 438
X 0.224 1 032 439

X 0.187 273 999
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Once again, all of the best-performing models use Zoopla photos. In most
cases, whether concatenated features or mean features are used has little impact
on model performance, other than for the model using Google Street View and
Zoopla images, where the concatenated features approach leads to slightly better
performance (concatenated features method: R2 = 0.44, N = 983, p < 0.001; mean
features method: R2 = 0.41, N = 983, p < 0.001). If Zoopla imagery is not used
in a model, there is a drop in performance once more, as the next best model uses
Google Street View and Geograph photos (R2 = 0.244, N = 983, p < 0.001).

Table 6.4 exhibits the elastic net parameters and coefficient statistics for all
of the models estimating changes in median house price rank. For each model, we
report: the combination of data sources used and whether the model uses the mean
features method or concatenated features method if multiple data sources are used,
exactly like Table 6.3; the optimal value of l1_ratio and the corresponding α from
fitting the elastic net; the total number of non-zero coefficients we extract from the
elastic net; and of the top 50 positive and negative elastic net coefficients, the number
of coefficients extracted from each data source if the model uses the concatenated
features method. Again, the table is ordered in terms of model performance, where
the best-performing model is first.

These elastic net models are practically lasso models like the median house
price estimation models, since the optimal l1_ratio values are always greater than 0.9.
The l1_ratio values are more varied, though, and the corresponding αs are generally
much smaller. For models using the concatenated features method, we also report
the number of coefficients extracted from each data source out of the top 50 positive
and negative elastic net coefficients, since the change in median house price rank
estimates are most impacted by these features. Again, if models use Zoopla images
and concatenated features, the elastic net coefficients are heavily influenced by Zoopla
features. In the combination model, 63 out of 100 features are Zoopla features; in the
Geograph and Zoopla model, 79 out of 100 features are Zoopla features; and in the
Google Street View and Zoopla model, 73 out of 100 features are Zoopla features.
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Table 6.4: Model configuration for all models inferring changes in median house prices in London from 2005 and
2006 to 2015 and 2016. We combine images from Google Street View, Geograph, and Zoopla in all possible variations, and
generate estimates using the methodology outlined in Fig. 6.1. This table displays the model parameters and a breakdown of the
coefficients for each of the models. For each model, the table shows: the data source combination and if applicable, whether the
model uses the mean features method or concatenated features method; the optimal value of l1_ratio from fitting the elastic net;
the corresponding α; the number of non-zero coefficients extracted from the model; and the number of coefficients extracted from
each data source in the top 50 positive and negative coefficients, if the model uses the concatenated features method. When using
concatenated features, as described in Section 6.2.3, we can distinguish between the features we extract from each data source.
‘S’ represents features extracted from Google Street View images, ‘G’ represents those extracted from Geograph images, and ‘Z’
represents those extracted from Zoopla images. Note that the α is given to 3 significant figures. Based on the values of l1_ratio
> 0.9, the elastic net models are close to lasso models once again and the αs are also generally very small. As with the models
estimating median house prices using concatenated features, if the models estimating changes in median house price rank use
Zoopla imagery, most of the features in the top 50 positive and negative coefficients are also Zoopla features.

Model Input Combination Elastic Net Parameters Coefficients
Google Geograph Zoopla Mean Concatenated l1_ratio α Total S G Z

X X X X 0.98 0.000 135 542 18 19 63
X X X 0.95 0.000 077 7 548 21 79

X X X 0.98 0.000 127 355 27 73
X X X 0.95 0.000 103 304

X X X X 0.97 0.000 118 298
X 0.99 9.000 767 146

X X X 0.999 99 0.0163 15
X X X 0.999 0.001 15 137
X X X 0.999 999 0.0317 33 8 25
X 0.9999 0.004 93 30

X 0.999 999 0.0223 37
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Again, the impact of Zoopla features can be seen in Fig. 6.4, which depicts
the elastic net coefficients we extract from the model using the concatenated features
method with images from all three data sources. Since we use concatenated features,
we need to distinguish between the features associated with each data source. Of
the top coefficients, 63 are features we extract from Zoopla images, whereas 18 come
from Google Street View images and 19 come from Geograph images. The elastic net
deems features extracted from Google Street View images and Geograph images less
important than those extracted from Zoopla images. This could suggest that indoor
visuals are more useful for estimating changes in local house prices than outdoor
visuals, although it may also be an effect of the greater number of Zoopla images
leading to a higher quality of information for these features.

Note that as in the earlier analyses in Chapters 3, 4, and 5, some features
that are positive coefficients in models estimating median house prices are negative
coefficients in models estimating changes in median house prices, and vice versa.
Again, some areas with high median house prices may not have climbed as highly in
the ranks, whereas other areas with low median house prices have climbed high in
the ranks.

6.4 Discussion

Throughout this chapter, we study the impact of combining imagery from Google
Street View, Geograph, and Zoopla on the performance of house price estimation
models. The Google Street View imagery in our dataset consists of streets and building
facades, whereas the Geograph imagery also depicts the environment surrounding
buildings. The Zoopla imagery consists of pictures of house interiors, as well as some
photos of housing facades. We examine the performance of models using one, two, or
three of these data sources, in all possible combinations. For each combination of
data source, we use the imagery to estimate median house prices in London during
2015 and 2016 at MSOA granularity, and to estimate relative changes in median
house prices from 2005 and 2006 to 2015 and 2016 in MSOAs of London.
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Figure 6.4: Top 50 elastic net coefficients for estimates of change in ranked
median house price in London from all images using the concatenated
features method. We train an elastic net model to estimate median house prices
using the methodology outlined in Fig. 6.1 and show the resulting coefficients. We use
the concatenated features method as described in Section 6.2.3, where we calculate
the mean feature vector for each MSOA for each of the three data sources, then
concatenate these feature vectors for each MSOA. Since we use concatenated features,
we can distinguish between the features we extract from each data source. ‘S’
represents Google Street View, ‘G’ represents Geograph, and ‘Z’ represents Zoopla.
Positive coefficients represent features that correspond to increases in median house
price rank and negative coefficients represent features that correspond to decreases
in median house price rank over the decade. (continues on the following page)
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Figure 6.4: (continues from previous page) Once again, the features we extract from
Zoopla images dominate the top coefficients. However, more features extracted from
Google Street View images appear to play a somewhat important role than they did
when estimating median house prices, leading to some reduction in importance of
Geograph images.

When examining model performance from each data source independently,
we discover that utilising older Google Street View images in conjunction with more
recent Google Street View images actually hinders model performance in comparison
to only using recent Google Street View images. We also find that the use of Zoopla
imagery leads to the most accurate models, whether we are estimating changes in
median house prices or median house prices themselves. Using Google Street View
images alone results in the next best-performing models, followed by the models using
Geograph imagery alone. This may be due to the difference in volume of images we
possess for each data source, as we have almost 4 times as many Zoopla photos as
Google Street View photos, and almost 14 times as many Zoopla photos as Geograph
photos. To better understand the impact of sample size on model performance in
future, we could use a small sample of images from each data source comprising the
same number of images to build house price estimation models, and then compare
performance.

To further compare model performance between Google Street View, Geograph,
and Zoopla images, it would useful if the images we extract information from were from
the same time period. Currently, our dataset consists of Google Street View images
taken during 2008–2009 and 2014–2015, Geograph images taken up to November
2019 with 98% of photos taken after January 2000, and Zoopla images taken from
January 2003 to June 2018. In future, we could look to retrieve image data from
exactly the same time period for all three data sources. This could supplement the
investigation into the relationship between sample size and model performance to
precisely determine which factors affect model performance.

We next analyse how model performance differs if we make use of images from
all three data sources at the same time. We observe that using all three data sources
leads to model performance that is almost identical to that of the model using Zoopla
images alone, despite the larger volume of images used. It is unclear whether the
lack of further improvement reflects the fact that adding images to a model from a
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different source has limited benefit, or whether there is little benefit in increasing the
number of images above a certain volume.

Finally, we compare and contrast the house price estimation models we build
from one, two, or three imagery data sources, in all possible combinations. When
estimating median house prices, we find that the best-performing model uses Google
Street View and Zoopla images. On the other hand, the model that uses images
from all three data sources leads to the best performance when estimating changes
in median house prices. However, for both analyses, the models improve upon the
models using Zoopla images only by the narrowest of margins. In fact, all of the
top-performing models use Zoopla imagery.

As such, from the models analysed here, it seems that using Zoopla imagery
alone may be the most efficient approach for building house price estimation models.
The best-performing models all use Zoopla imagery. By constructing a model that
uses Zoopla imagery alone, with no additional data sources, we can build house price
estimation models rapidly by using fewer photos but still achieving a high level of
accuracy. Again, one possible explanation for the superior performance of models
using Zoopla imagery is the larger sample of available images. As previously discussed,
this could be controlled for in future analyses by taking samples of identical sizes
from the three imagery sources. This would make it clearer whether the superior
value of Zoopla imagery comes from the information the photos contain of housing
interiors, or sample size alone.
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Chapter 7

Discussion

7.1 Motivation

Whether it be individuals aiming for the property ladder or governments setting
housing policies, the relevance of house prices to society is apparent at both a
microeconomic and macroeconomic level. Unfortunately, obtaining accurate and
timely information about house prices in England is challenging, as there exists a time
delay of approximately two months between the occurrence of a property transaction
and the availability of data on the transaction from the Land Registry. This time
delay negatively impacts the ability of interested parties to make informed decisions
regarding housing.

However, technology has advanced swiftly over the past few decades, now
allowing for large and complex calculations that were not feasible in the decade prior.
In turn, the development of deep learning tools, such as neural networks, has paved
the way for high-calibre artificial intelligence. Specifically, CNNs have proven to be
successful in image recognition tasks and can accurately extract visual information
from images (LeCun et al., 2015). Additionally, the field of machine learning has
produced various methodologies for working with large amounts of data, including
the elastic net model, which is a linear model with a robust variable selection method
that discards unimportant input variables (Zou & Hastie, 2005). Since CNNs can
extract an immense number of visual characteristics from an image, using them
together could be beneficial (Seresinhe et al., 2017).

The availability of image data is also growing rapidly, with well-known services
such as Google Street View providing imagery of streets and buildings, and property
websites such as Zoopla containing large volumes of photos of both housing interiors
and exteriors. In this thesis, we present an exploratory analysis to determine the value
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of the information that can be extracted from rapidly increasing large collections
of imagery with deep learning tools with respect to house price estimation. If the
source of imagery we utilised were updated more frequently than the Land Registry,
it would be possible to generate faster indicators of house prices.

Traditional house price estimation models in computational social science
literature use variables that relate to the value of a house to make house price
predictions, including the number of bedrooms or the quality of nearby schools (Seo
& Simons, 2009). However, the appearance of a house and its neighbourhood can also
be indicative of its value. When humans judge the value of a house, we instinctively
take into account what both the house and its surroundings look like. Yet, the
researchers and practitioners studying house prices rarely include visual information
in their models. This thesis outlines a methodology that could make it easier to
gain insights from relevant imagery of housing in relation to house prices. Including
visual details in a house price estimation model may be valuable to practitioners and
researchers, and allow them to potentially improve their models.

The methodology we describe can also be applied to topics other than house
prices. Social scientists may find value in learning and applying our methods to
other sub-disciplines of social science. They could use the information available in
imagery that is relevant to their topic to further understanding in their field. The
focus of this thesis, however, is to understand whether different sources of imagery of
houses can be exploited to infer house prices. By drawing on large volumes of photos
taken at street or eye level, our research helps capture the human perspective in a
computational model. Note that the foundations of the thesis are similar to those
used in the field of social data science, as we start with data and draw conclusions
from them, with the opportunity to inform theory afterwards.

7.2 Key results

Our first set of analyses in Chapter 3 explores whether we can infer house prices from
Google Street View images. Google Street View images reflect a human perspective
of street environments and consist of visuals of roads and building facades.

Throughout this thesis, we focus on estimating median house prices in London
during 2015 and 2016 at MSOA granularity. To estimate median house prices, we
first extract visual features from a set of 518,808 Google Street View images taken
between 2014 and 2015 using the Places205 CNN (Zhou et al., 2014). We then use
these visual features as input for an elastic net to make inferences about local house
prices. We provide evidence suggesting that local house prices can be successfully
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estimated from Google Street View images, and the model performs reasonably well.
In addition to estimating median house prices, we also investigate whether we can
estimate relative changes in median house prices over a decade. Namely, we utilise a
ranking method to calculate the change in median house price rank from 2005 and
2006 to 2015 and 2016, and estimate this change from the same visual features as the
median house price estimation model. Using the elastic net, we find that, at least to
some extent, patterns in the changes can also be inferred from Google Street View
images.

We then investigate whether this success can be replicated with an alternative
data source of outdoor imagery. In Chapter 4, we therefore explore the usage of
Geograph data to estimate house prices. Geograph is another frequently updated
image source consisting of outdoor, street-level imagery, but images are not restricted
to streets and include visuals of the surrounding environment, such as parks and
rivers. Again, we estimate median house prices in London during 2015 and 2016 from
Geograph imagery at MSOA granularity using an elastic net.

Unlike the Google Street View analyses, we use the updated and improved
Places365 CNN (Zhou et al., 2018) to extract an even larger number of scene features
from 51,918 Geograph images taken during 2015 and 2016. We discover that the
model achieves only limited success when inferring median house prices in London.
Upon inspection, we find that many areas across London are unrepresented by the
images taken during 2015 and 2016. We therefore attempt to estimate median house
prices from the entire dataset of Geograph imagery, covering photos taken up to
November 2019 with 98% of photos taken after January 2000, and totalling 328,014
images. We find that the model shows a considerable improvement when using this
larger dataset, but does not perform as well as the Google Street View model. This
may be due to the greater number of Google Street View photos used for analysis
(518,808) in comparison to the number of Geograph photos used for analysis (328,014).

Once more, we also attempt to estimate relative changes in median house
price in London from 2005 and 2006 to 2015 and 2016 using visual features from
Geograph and an elastic net. We do this for both the complete Geograph dataset and
the subset of images taken between 2015 and 2016. Again, we discover that using
the complete dataset leads to an improvement in model performance in comparison
to using the subset of images, but both models achieve limited success and perform
worse than the Google Street View model. However, the fall in performance in the
Geograph analysis in comparison to the Google Street View analysis is similar to
the fall in performance between the Google Street View and Geograph analyses
for median house price estimation. Again, it is possible that the difference in the
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number of images used for analysis is the cause of the discrepancy between the model
performances.

Both of the data sources analysed so far comprise outdoor visual information.
Would it be possible to infer local house prices from internal images of houses?
To explore this question, in Chapter 5, we access large volumes of photographs of
houses from the frequently updated property website Zoopla. Zoopla images depict
both house interiors and house exteriors. Once again, we estimate median house
prices in London during 2015 and 2016 at MSOA granularity. We first extract visual
features from 2,702,506 indoor images of houses for sale using the Places365 CNN,
and then use these features as predictors in an elastic net model. We discover that the
model can generate very good estimates and is high-performing with indoor imagery
alone. This model performs notably better than those built using Google Street
View and Geograph images. Using the same indoor imagery to estimate relative
changes in median house prices over a decade in London also leads to notably superior
performance compared to the models using Google Street View and Geograph imagery.
As with the Google Street View and Geograph analyses however, performance is not
as good on this task as for estimation of median house prices.

As well as indoor Zoopla images, we also have access to 1,025,384 outdoor
Zoopla images of building facades and back gardens. We find that these images
can be used to estimate median house prices and changes in median house prices,
with performance that improves upon that exhibited by the corresponding Google
Street View and Geograph models. However, the models using indoor Zoopla imagery
deliver better performance. We further study the effects of combining both interior
and exterior visual information from Zoopla to estimate median house prices and
changes in median house prices. The volume of images used in the models increases
to 3,727,890. These models demonstrate a marginal improvement in comparison to
models using indoor imagery alone. Based on this result, we consider combining the
visual information from all three of our data sources, and ask how model performance
would differ.

Hence, in Chapter 6, we examine the performance of models using one, two,
or three of the data sources Google Street View, Geograph, and Zoopla in all possible
combinations. Our methodology involves combining the visual features that we
extract from each of our data sources using Places365, and using them as input to
an elastic net to estimate median house prices during 2015 and 2016 and changes
in median house prices from 2005 and 2006 to 2015 and 2016 in London at MSOA
granularity.

Out of the combinations of data sources that we explore, we find that the
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best-performing model for estimating median house prices makes use of both Google
Street View and Zoopla imagery. However, the best-performing model for estimating
changes in median house prices uses all three data sources. In fact, all of the best-
performing models include visual information from Zoopla images and only marginally
improve upon the models that use indoor Zoopla imagery alone. It seems that the
most efficient approach for building house price estimation models would be to use
indoor Zoopla imagery alone, with no additional data sources. We can then build
house price estimation models rapidly by using fewer photos but still achieving a
high level of accuracy.

7.3 Limitations and future work

Although we are successfully able to develop house price estimation models that
perform well from images of houses and their surrounding neighbourhoods, there are
some limitations to our analyses. A key limitation that impacts the accuracy of all
of the models to some degree is their ability to handle more extreme values of local
house prices and changes in local house prices. Since the house price data have a
positive skew, estimating the logarithm of median house prices instead of median
house prices directly could eradicate this issue with extreme values and improve
model accuracy. In terms of estimating the changes in median house prices, the
ranking method we use leads to changes with a heavy-tailed distribution. Using a
different approach for inferring relative changes may be a future step to take.

For example, (Osorio, 2020) developed a library for the programming lan-
guage R that is capable of performing robust estimation considering heavy-tailed
distributions called ‘heavy’. This library could be used to build a linear regression
model that takes the features we extract from images as input to estimate the changes
in median house price rank. Although this is similar to the methodology we use
when building an elastic net model, the difference is that we can specify which
heavy-tailed distribution should be considered when fitting the model, such as the
Cauchy distribution. However, the normal distribution can also be chosen. This
approach could lead to better estimates of the changes in ranked price.

Throughout this thesis, we use spatial data to model house prices in London
at MSOA granularity, but we do not consider the impact of spatial autocorrelation
on our results. Spatial autocorrelation is a measure of the similarity between nearby
observations, which would be MSOAs in our case. Positive spatial autocorrelation
indicates that similar values or areas are close together on a map, whereas negative
spatial autocorrelation indicates that different values or areas are close together on
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a map. Our data are likely to have some spatial autocorrelation present because
MSOAs that are near each other are likely to share common characteristics. This is
supported by our comparisons between Dalston and Acton in Fig. 5.7. If this is the
case, our results will be impacted and we may have some redundancy. Researchers
can extend our analyses in future by conducting a thorough analysis into the spatial
autocorrelation in our models, and possibly adjusting the model to handle spatial
autocorrelation if it is definitely present.

In terms of the high performance of models using Zoopla data, we suggest
that it can be attributed to a large, representative volume of photos across areas of
London, and potentially the information available from indoor imagery. We use the
Places365 CNN for scene detection to extract features from the images, and it is able
to capture some differences between housing interiors, such as differences between
ordinary beds and four-poster beds. However, the interiors of homes contain many
minutiae that cannot be captured by Places365, like the appliances in a kitchen or
the furniture in a bathroom. As such, using an object detection CNN with indoor
Zoopla data in addition to a scene recognition CNN could be helpful and allow us to
identify objects that are related to house prices. Furthermore, data available from
Zoopla are not restricted to images and also include details of houses advertised on
Zoopla, such as the type of property on sale. Future work could look at developing
individual models based on the type of housing of interest, from flats to houses.

A limitation of our analyses using the Zoopla dataset is that we are not able
to attach sale and marketed dates to each property and instead use all of the image
data from multiple time periods. If the data associated with properties advertised on
Zoopla are made available as soon as the advert is released, then it could be dated in
almost real-time. Furthermore, since the indoor Zoopla images lead to a successful
house price estimation model, future research could also apply our methodology to
other indoor imagery of housing. Li et al. (2018) present a dataset of simulated videos
of the interiors of houses at a high-resolution and high frame-rate. The scenes have
been rendered to look similar to real-world decorations, and contain different layouts
of rooms and different lighting. Using our methodology to estimate local house prices
from image stills from the synthetic videos would allow us to understand whether
useful information can be extracted from synthetic imagery of housing interiors
for local house price estimation, as was the case with real photographs of housing
interiors.

When building models that use a combination of Google Street View, Ge-
ograph, and Zoopla images, we make use of all of the image data we have access
to, but the sample sizes differ between the data sources. All of the best-performing
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models use Zoopla imagery, and Zoopla is the data source with the largest sample
size, followed by Google Street View, then Geograph. Furthermore, since we make
use of all of the image data we have access to, we use images from many time periods,
rather than specific images from set time periods. To better understand the impact
of sample size and differing time periods on model performance, a next step would
be to use a small sample of a set number of images from each data source during a
set time period to build house price estimation models and compare performance.

Future research could also extend our analyses by using our methodology for
images taken during a different time period. For example, indoor Zoopla images
from 2019 and 2020 could be accessed and used to develop a model that estimates
median house prices in MSOAs across London during 2019 and 2020. This would
provide the opportunity to determine whether the models we build are robust and
whether the results generalise to other points in time. As well exploring a different
time period, future research could explore the visual differences over time between
images from the past and images from the present. For example, visual features
could be extracted from Geograph images from 2010 and 2020, and the differences
in the feature values could be calculated and used to automatically infer changes in
median house price rank. This may lead to models that perform well, as the visual
differences would be accounted for.

Additionally, our work shows that local house prices can be estimated well
at MSOA level, and lays the foundations for several extensions at other levels of
granularity. For example, it may also be possible to estimate house prices of individual
homes, rather than an entire area. With the Zoopla data in particular, it is clear
which images are associated with which property. The latest last marketed date
could be used to date the properties and our methodology could be used to estimate
individual house prices. Another future step would be to apply our methodology to
housing in areas outside of London. London is known to be more expensive than the
remainder of England, so house price dynamics are likely to differ elsewhere.

In this thesis, we present an exploratory analysis that determines whether
imagery of housing can be used to help estimate house prices. This could help
individuals and organisations concerned with house prices to make decisions at a
faster rate than is currently possible, if the imagery used for house price estimation
is updated more frequently than official information. Evidently from our results,
imagery of housing, especially from Zoopla, can be valuable for estimating local house
prices. Furthermore, Zoopla data are updated more rapidly than house price data, as
numerous properties are advertised on the marketing platform on a daily basis, rather
than after an approximate delay of two months. As such, new images of properties
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are frequently available from areas all across the UK and can be used for local house
price estimation. However, the question remains open as to whether images from
Zoopla are more valuable than delayed official information over time. To investigate
this, future research could examine a time-series model that estimates local house
prices based on official data and compare this model to a time-series model that also
incorporates visual information, perhaps starting with a simple ARIMA model.

In future, a more thorough nowcasting analysis could also be helpful for
determining whether the mean absolute errors that our models achieve are good,
and whether the models we built improve upon waiting 2 months for official house
price data. For instance, the Zoopla model that we build using imagery of both the
indoors and outdoors of houses in London achieves a mean absolute error of £65,700.
We would expect that using this model would be better than waiting 2 months for
data because house prices can change rapidly. During the 2008 financial crash, for
example, the entire economy changed, including a mass reduction in house prices.
Making decisions over 2 months with out-of-date information in this circumstance
could have negative consequences, and impact the economy further.

In general, our research follows the ideas that are used in the field of social
data science. This means that we do not directly compare our results to outstanding
theories associated with house prices. A future step would be to compare our models
to models that take a more traditional approach and are formed based on a theory.
We may then be able to understand which theories match our findings. Furthermore,
the natural next step would be to combine image data with more traditional house
price estimation models. Other models of house price estimation, such as hedonic
pricing models, often include quantitative statistics relevant to housing, such as the
distance to the nearest form of public transport or the number of bedrooms in a
property (Higgins et al., 2019; Sirmans et al., 2006).By including visual features in
addition to these statistics, a house price estimation model of greater accuracy could
be developed.

In parallel to our studies, some researchers have combined the visual informa-
tion available from Google Street View with deep learning to make inferences about
neighbourhoods. For example, Gebru et al. (2017) use Google Street View imagery
with a CNN to estimate socioeconomic attributes, such as income and education, of
people in neighbourhoods across the US from motor vehicles encountered in these
neighbourhoods, whereas Suel, Polak, Bennett, and Ezzati (2019) use Google Street
View imagery to measure inequalities and monitor the impacts of policies in neigh-
bourhoods of London. Furthermore, some researchers have begun the process of using
visual information and statistics related to housing in house price estimation models.
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Law, Paige, and Russell (2019) conduct many experiments using Google Street View
imagery, as well as satellite imagery and descriptive statistics, to estimate house
prices across London. They compare a range of modelling techniques, including a
linear hedonic pricing model and a generalised additive model, and highlight the
benefits of using all accessible information in a house price estimation model.

Whilst Law et al. (2019) focuses on the use of outdoor imagery in conjunction
with statistical data about housing, a recent paper takes the analyses one step further
in Nouriani and Lemke (2022). They build a dataset containing indoor, outdoor, and
satellite imagery of housing around Minnesota, USA, and compare numerous methods
to extract visual information from them. As well as extracting visual information,
they classify the level of luxury of a room and complement the visual information
with descriptive statistics of a home to develop house price estimation models at
an individual level. Of the six regression methods compared, the gradient boosting
machine performed most accurately, over the elastic net method, and the model
outperformed the pre-existing house valuation tool ‘Zillow’s Zestimate’. These results
suggest that a similar methodology could be implemented in England using Zoopla
imagery and further data.

Although research conducted in parallel to ours investigates the use of Google
Street View images for house price estimation, our research offers insights into the
performance of local house price estimation models using images from Geograph
and Zoopla as well. The Geograph images in particular contain visuals of streets,
like Google Street View, but also scenes of off-road areas such as parks, canals, and
mountains. Furthermore, the research conducted in parallel to ours tends to focus on
estimating house prices, whereas our research offers insights into relative changes in
local house prices, in addition to estimating local house prices themselves.

7.4 Conclusion

In this thesis, we take initial steps towards understanding whether street-level imagery
can be valuable when estimating local house prices and changes in local house prices.
Our results demonstrate how utilising image data reflecting a human perspective
of houses in conjunction with deep learning tools can facilitate the development of
successful house price estimation models.

Our novel methodology could be beneficial for social scientists looking to
answer other questions with relevant image data, and help further the understanding of
human behaviour. Our methods also have the potential to improve the understanding
of house prices for researchers interested in them, as a combination of visual and
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non-visual characteristics could improve house price estimation models.
Furthermore, as the speed of collection of such imagery increases, our approach

could equip national and local policymakers with more timely information on house
prices, avoiding the traditional two month delay usually imposed upon this key
economic indicator. In turn, this would enable policymakers to make more informed
decisions about economic policy.
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